221 research outputs found

    Attribute-Graph: A Graph based approach to Image Ranking

    Full text link
    We propose a novel image representation, termed Attribute-Graph, to rank images by their semantic similarity to a given query image. An Attribute-Graph is an undirected fully connected graph, incorporating both local and global image characteristics. The graph nodes characterise objects as well as the overall scene context using mid-level semantic attributes, while the edges capture the object topology. We demonstrate the effectiveness of Attribute-Graphs by applying them to the problem of image ranking. We benchmark the performance of our algorithm on the 'rPascal' and 'rImageNet' datasets, which we have created in order to evaluate the ranking performance on complex queries containing multiple objects. Our experimental evaluation shows that modelling images as Attribute-Graphs results in improved ranking performance over existing techniques.Comment: In IEEE International Conference on Computer Vision (ICCV) 201

    Data-free parameter pruning for Deep Neural Networks

    Full text link
    Deep Neural nets (NNs) with millions of parameters are at the heart of many state-of-the-art computer vision systems today. However, recent works have shown that much smaller models can achieve similar levels of performance. In this work, we address the problem of pruning parameters in a trained NN model. Instead of removing individual weights one at a time as done in previous works, we remove one neuron at a time. We show how similar neurons are redundant, and propose a systematic way to remove them. Our experiments in pruning the densely connected layers show that we can remove upto 85\% of the total parameters in an MNIST-trained network, and about 35\% for AlexNet without significantly affecting performance. Our method can be applied on top of most networks with a fully connected layer to give a smaller network.Comment: BMVC 201

    Image Denoising via CNNs: An Adversarial Approach

    Full text link
    Is it possible to recover an image from its noisy version using convolutional neural networks? This is an interesting problem as convolutional layers are generally used as feature detectors for tasks like classification, segmentation and object detection. We present a new CNN architecture for blind image denoising which synergically combines three architecture components, a multi-scale feature extraction layer which helps in reducing the effect of noise on feature maps, an l_p regularizer which helps in selecting only the appropriate feature maps for the task of reconstruction, and finally a three step training approach which leverages adversarial training to give the final performance boost to the model. The proposed model shows competitive denoising performance when compared to the state-of-the-art approaches

    Analyzing structural characteristics of object category representations from their semantic-part distributions

    Full text link
    Studies from neuroscience show that part-mapping computations are employed by human visual system in the process of object recognition. In this work, we present an approach for analyzing semantic-part characteristics of object category representations. For our experiments, we use category-epitome, a recently proposed sketch-based spatial representation for objects. To enable part-importance analysis, we first obtain semantic-part annotations of hand-drawn sketches originally used to construct the corresponding epitomes. We then examine the extent to which the semantic-parts are present in the epitomes of a category and visualize the relative importance of parts as a word cloud. Finally, we show how such word cloud visualizations provide an intuitive understanding of category-level structural trends that exist in the category-epitome object representations

    Object Level Deep Feature Pooling for Compact Image Representation

    Full text link
    Convolutional Neural Network (CNN) features have been successfully employed in recent works as an image descriptor for various vision tasks. But the inability of the deep CNN features to exhibit invariance to geometric transformations and object compositions poses a great challenge for image search. In this work, we demonstrate the effectiveness of the objectness prior over the deep CNN features of image regions for obtaining an invariant image representation. The proposed approach represents the image as a vector of pooled CNN features describing the underlying objects. This representation provides robustness to spatial layout of the objects in the scene and achieves invariance to general geometric transformations, such as translation, rotation and scaling. The proposed approach also leads to a compact representation of the scene, making each image occupy a smaller memory footprint. Experiments show that the proposed representation achieves state of the art retrieval results on a set of challenging benchmark image datasets, while maintaining a compact representation.Comment: Deep Vision 201
    corecore