7,431 research outputs found
The Chandra X-Ray Observatory's Radiation Environment and the AP-8/AE-8 Model
The Chandra X-ray Observatory (CXO) was launched on July 23, 1999 and reached
its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit,
approximately 140,000 km x 10,000 km, and has a period of approximately 63.5
hours (~ 2.65 days). It transits the Earth's Van Allen belts once per orbit
during which no science observations can be performed due to the high radiation
environment. The Chandra X-ray Observatory Center (CXC) currently uses the
National Space Science Data Center's ``near Earth'' AP-8/AE-8 radiation belt
model to predict the start and end times of passage through the radiation
belts. However, our scheduling software uses only a simple dipole model of the
Earth's magnetic field. The resulting B, L magnetic coordinates, do not always
give sufficiently accurate predictions of the start and end times of transit of
the Van Allen belts. We show this by comparing to the data from Chandra's
on-board radiation monitor, the EPHIN (Electron, Proton, Helium Instrument
particle detector) instrument. We present evidence that demonstrates this
mis-timing of the outer electron radiation belt as well as data that also
demonstrate the significant variablity of one radiation belt transit to the
next as experienced by the CXO. We also present an explanation for why the
dipole implementation of the AP-8/AE-8 model is not ideally suited for the CXO.
Lastly, we provide a brief discussion of our on-going efforts to identify a
model that accounts for radiation belt variability, geometry, and one that can
be used for observation scheduling purposes.Comment: 12 pgs, 6 figs, for SPIE 4012 (Paper 76
Tropical protected areas reduced deforestation carbon emissions by one third from 2000-2012
This is the final version. Available on open access from Springer Nature via the DOI in this recordTropical deforestation is responsible for around one tenth of total anthropogenic carbon emissions, and tropical protected areas (PAs) that reduce deforestation can therefore play an important role in mitigating climate change and protecting biodiversity and ecosystem services. While the effectiveness of PAs in reducing deforestation has been estimated, the impact on global carbon emissions remains unquantified. Here we show that tropical PAs overall reduced deforestation carbon emissions by 4.88 Pg, or around 29%, between 2000 and 2012, when compared to expected rates of deforestation controlling for spatial variation in deforestation pressure. The largest contribution was from the tropical Americas (368.8 GgC y-1), followed by Asia (25.0 GgC y-1) and Africa (12.7 GgC y-1). Variation in PA effectiveness is largely driven by local factors affecting individual PAs, rather than designations assigned by governments
Recommended from our members
Helping out: a national survey of volunteering and charitable giving
This report details the main findings of a national survey of volunteering and charitable giving – termed Helping Out – carried out by the National Centre for Social Research (NatCen) in partnership with the Institute for Volunteering Research (IVR) in 2006/07. The study was carried out for the Office of the Third Sector in the Cabinet Office.
The main aims of the study were to examine:
- how and why people give unpaid help to organisations, and what they think of their experiences;
- what stops people from giving help;
- the links between giving time and giving money;
- how, why and how much people give money to charity;
- what stops people from giving money to charity.
There was also interest in estimates of the prevalence of volunteering and charitable giving. However, for a number of reasons (detailed in Chapters 2 and 10), prevalence estimates derived from this study should not be used to look at changes in these measures over time. Other study series are better suited to this purpose.
In terms of volunteering, the study focused on formal help given through groups and organisations rather than informal help (given as an individual, e.g. to family and friends)
Leading quantum gravitational corrections to QED
We consider the leading post-Newtonian and quantum corrections to the
non-relativistic scattering amplitude of charged spin-1/2 fermions in the
combined theory of general relativity and QED. The coupled Dirac-Einstein
system is treated as an effective field theory. This allows for a consistent
quantization of the gravitational field. The appropriate vertex rules are
extracted from the action, and the non-analytic contributions to the 1-loop
scattering matrix are calculated in the non-relativistic limit. The
non-analytical parts of the scattering amplitude are known to give the long
range, low energy, leading quantum corrections, are used to construct the
leading post-Newtonian and quantum corrections to the two-particle
non-relativistic scattering matrix potential for two massive fermions with
electric charge.Comment: 14 pages, 29 figures, format RevTex
Allometry and growth of eight tree taxa in United Kingdom woodlands.
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative
Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0As part of a project to develop predictive ecosystem models of United Kingdom woodlands we have collated data from two United Kingdom woodlands - Wytham Woods and Alice Holt. Here we present data from 582 individual trees of eight taxa in the form of summary variables relating to the allometric relationships between trunk diameter, height, crown height, crown radius and trunk radial growth rate to the tree's light environment and diameter at breast height. In addition the raw data files containing the variables from which the summary data were obtained. Large sample sizes with longitudinal data spanning 22 years make these datasets useful for future studies concerned with the way trees change in size and shape over their life-span
Bulletin No. 169 - The Use of Alkali Water for Irrigation
Because of the scanty rainfall of arid regions, the soluble materials in the rocks and soil are not leached out as they are where the rainfall is high. As a result, the accumulation of excessive quantities of soluble salts is likely to be a menace to arid soils. Farm practices must be directed toward preventing this condition
Dynamics of quartz tuning fork force sensors used in scanning probe microscopy
We have performed an experimental characterization of the dynamics of
oscillating quartz tuning forks which are being increasingly used in scanning
probe microscopy as force sensors. We show that tuning forks can be described
as a system of coupled oscillators. Nevertheless, this description requires the
knowledge of the elastic coupling constant between the prongs of the tuning
fork, which has not yet been measured. Therefore tuning forks have been usually
described within the single oscillator or the weakly coupled oscillators
approximation that neglects the coupling between the prongs. We propose three
different procedures to measure the elastic coupling constant: an
opto-mechanical method, a variation of the Cleveland method and a thermal noise
based method. We find that the coupling between the quartz tuning fork prongs
has a strong influence on the dynamics and the measured motion is in remarkable
agreement with a simple model of coupled harmonic oscillators. The precise
determination of the elastic coupling between the prongs of a tuning fork
allows to obtain a quantitative relation between the resonance frequency shift
and the force gradient acting at the free end of a tuning fork prong.Comment: 16 pages, 6 figures, 2 Table
A haloarchaeal ferredoxin electron donor that plays an essential role in nitrate assimilation
In the absence of ammonium, many organisms, including the halophilic archaeon Haloferax volcanii DS2 (DM3757), may assimilate inorganic nitrogen from nitrate or nitrite, using a ferredoxin-dependent assimilatory NO3-/NO2- reductase pathway. The small acidic ferredoxin Hv-Fd plays an essential role in the electron transfer cascade required for assimilatory nitrate and nitrite reduction by the cytoplasmic NarB- and NirA-type reductases respectively. UV–visible absorbance and EPR spectroscopic characterization of purified Hv-Fd demonstrate that this protein binds a single [2Fe–2S] cluster, and potentiometric titration reveals that the cluster shares similar redox properties with those present in plant-type ferredoxins
Optimality Theory as a Framework for Lexical Acquisition
This paper re-investigates a lexical acquisition system initially developed
for French.We show that, interestingly, the architecture of the system
reproduces and implements the main components of Optimality Theory. However, we
formulate the hypothesis that some of its limitations are mainly due to a poor
representation of the constraints used. Finally, we show how a better
representation of the constraints used would yield better results
Mechanisms of Bacterial Extracellular Electron Exchange.
The biochemical mechanisms by which microbes interact with extracellular soluble metal ions and insoluble redox-active minerals have been the focus of intense research over the last three decades. The process presents two challenges to the microorganism; firstly electrons have to be transported at the cell surface, which in Gram negative bacteria presents an additional problem of electron transfer across the ~ 6 nm of the outer membrane. Secondly the electrons must be transferred to or from the terminal electron acceptors or donors. This review covers the known mechanisms that bacteria use to transport electrons across the cell envelope to external electron donors/acceptors. In Gram negative bacteria electron transfer across the outer membrane involves the use of an outer membrane β-barrel and cytochrome. These can be in the form of a porin-cytochrome protein, such as Cyc2 of Acidothiobacillus ferrioxydans, or a multiprotein porin-cytochrome complex like MtrCAB of Shewanella oneidensis MR-1. For mineral respiring organisms there is the additional challenge of transferring the electrons from the cell to mineral surface. For the strict anaerobe Geobacter sulfurreducens this requires electron transfer through conductive pili to associated cytochrome OmcS that directly reduces Fe(III)oxides, while the facultative anaerobe S. oneidensis MR-1 accomplishes mineral reduction through direct membrane contact, contact through filamentous extentions and soluble flavin shuttles, all of which require the outer membrane cytochromes MtrC and OmcA in addition to secreted flavin
- …