28,044 research outputs found

    Exotic phase separation in one-dimensional hard-core boson system with two- and three-body interactions

    Full text link
    We investigate the ground state phase diagram of hard-core boson system with repulsive two-body and attractive three-body interactions in one-dimensional optic lattice. When these two interactions are comparable and increasing the hopping rate, physically intuitive analysis indicates that there exists an exotic phase separation regime between the solid phase with charge density wave order and superfluid phase. We identify these phases and phase transitions by numerically analyzing the density distribution, structure factor of density-density correlation function, three-body correlation function and von Neumann entropy estimator obtained by density matrix renormalization group method. These exotic phases and phase transitions are expected to be observed in the ultra-cold polar molecule experiments by properly tuning interaction parameters, which is constructive to understand the physics of ubiquitous insulating-superconducting phase transitions in condensed matter systems

    R\'enyi Mutual Information for Free Scalar in Even Dimensions

    Full text link
    We compute the R\'enyi mutual information of two disjoint spheres in free massless scalar theory in even dimensions higher than two. The spherical twist operator in a conformal field theory can be expanded into the sum of local primary operators and their descendants. We analyze the primary operators in the replicated scalar theory and find the ones of the fewest dimensions and spins. We study the one-point function of these operators in the conical geometry and obtain their expansion coefficients in the OPE of spherical twist operators. We show that the R\'enyi mutual information can be expressed in terms of the conformal partial waves. We compute explicitly the R\'enyi mutual information up to order zdz^d, where zz is the cross ratio and dd is the spacetime dimension.Comment: 29 pages; More discussion on the partition function of primary operators, the contribution from spin-1 operator has been correcte

    Note on DBI dynamics of Dbrane Near NS5-branes

    Full text link
    In this note, we investigate the homogeneous radial dynamics of (Dp, NS5)-systems without and with one compactified transverse direction, in the framework of DBI effective action. During the homogeneous evolution, the electric field on the D-brane is always conserved and the radial motion could be reduced to an one-dimension dynamical system with an effective potential. When the Dp-brane energy is not high, the brane moves in a restricted region, with the orbits depending on the conserved energy, angular momentum through the form of the effective potential. When the Dp-brane energy is high enough, it can escape to the infinity. It turns out that the conserved angular momentum plays an interesting role in the dynamics. Moreover, we discuss the gauge dynamics around the tachyon vacuum and find that the dynamics is very reminiscent of the string fluid in the rolling tachyon case.Comment: 13 pages, 2 figures; typos corrected, discussions improved; gauge dynamics has been include

    D1-D3 (or D3ˉ\bar{\textrm{D}3}) Systems with Fluxes

    Full text link
    In this article we study D1-D3 (or D3ˉ\bar{\textrm{D}3}) brane systems with generic constant electric and magnetic fluxes in IIB string theory. We work out all possible supersymmetric configurations and find out via T-duality all of them and corresponding supersymmetry conditions could be related to the supersymmetric intersecting D1-D1 pairs. And we do D1-D3 (or D3ˉ\bar{\textrm{D}3}) open string quantization for a class of configurations. We find that there are many near massless states in NS sector for near-BPS configurations. Furthermore we calculate open string pair creation rate in generic nonsupersymmetric configurations.Comment: 31 pages. References adde