846 research outputs found

    Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses

    Get PDF
    The evolution of galaxy cluster counts is a powerful probe of several fundamental cosmological parameters. A number of recent studies using this probe have claimed tension with the cosmology preferred by the analysis of the Planck primary CMB data, in the sense that there are fewer clusters observed than predicted based on the primary CMB cosmology. One possible resolution to this problem is systematic errors in the absolute halo mass calibration in cluster studies, which is required to convert the standard theoretical prediction (the halo mass function) into counts as a function of the observable (e.g., X-ray luminosity, Sunyaev-Zel'dovich flux, optical richness). Here we propose an alternative strategy, which is to directly compare predicted and observed cluster counts as a function of the one-dimensional velocity dispersion of the cluster galaxies. We argue that the velocity dispersion of groups/clusters can be theoretically predicted as robustly as mass but, unlike mass, it can also be directly observed, thus circumventing the main systematic bias in traditional cluster counts studies. With the aid of the BAHAMAS suite of cosmological hydrodynamical simulations, we demonstrate the potential of the velocity dispersion counts for discriminating even similar Λ\LambdaCDM models. These predictions can be compared with the results from existing redshift surveys such as the highly-complete Galaxy And Mass Assembly (GAMA) survey, and upcoming wide-field spectroscopic surveys such as the Wide Area Vista Extragalactic Survey (WAVES) and the Dark Energy Survey Instrument (DESI).Comment: 15 pages, 13 figures. Accepted for publication in MNRAS. New section on cosmological forecasts adde

    Supporting home care for the dying: an evaluation of healthcare professionals' perspectives of an individually tailored hospice at home service

    Get PDF
    AIMS AND OBJECTIVES: To explore health care professionals' perspective of hospice at home service that has different components, individually tailored to meet the needs of patients. BACKGROUND: Over 50% of adults diagnosed with a terminal illness and the majority of people who have cancer, prefer to be cared for and to die in their own home. Despite this, most deaths occur in hospital. Increasing the options available for patients, including their place of care and death is central to current UK policy initiatives. Hospice at home services aim to support patients to remain at home, yet there are wide variations in the design of services and delivery. A hospice at home service was developed to provide various components (accompanied transfer home, crisis intervention and hospice aides) that could be tailored to meet the individual needs of patients. DESIGN: An evaluation study. METHODS: Data were collected from 75 health care professionals. District nurses participated in one focus group (13) and 31 completed an electronic survey. Palliative care specialist nurses participated in a focus group (9). One hospital discharge co-ordinator and two general practitioners participated in semi-structured interviews and a further 19 general practitioners completed the electronic survey. RESULTS: Health care professionals reported the impact and value of each of the components of the service, as helping to support patients to remain at home, by individually tailoring care. They also positively reported that support for family carers appeared to enable them to continue coping, rapid access to the service was suggested to contribute to faster hospital discharges and the crisis intervention service was identified as helping patients remain in their own home, where they wanted to be. CONCLUSIONS: Health care professionals perceived that the additional individualised support provided by this service contributed to enabling patients to continue be cared for and to die at home in their place of choice. RELEVANCE TO CLINICAL PRACTICE: This service offers various components of a hospice at home service, enabling a tailor made package to meet individual and local area needs. Developing an individually tailored package of care appears to be able to meet specific needs

    Galaxy and Mass Assembly (GAMA): Redshift Space Distortions from the Clipped Galaxy Field

    Get PDF
    We present the first cosmological measurement derived from a galaxy density field subject to a `clipping' transformation. By enforcing an upper bound on the galaxy number density field in the Galaxy and Mass Assembly survey (GAMA), contributions from the nonlinear processes of virialisation and galaxy bias are greatly reduced. This leads to a galaxy power spectrum which is easier to model, without calibration from numerical simulations. We develop a theoretical model for the power spectrum of a clipped field in redshift space, which is exact for the case of anisotropic Gaussian fields. Clipping is found to extend the applicability of the conventional Kaiser prescription by more than a factor of three in wavenumber, or a factor of thirty in terms of the number of Fourier modes. By modelling the galaxy power spectrum on scales k < 0.3 h/Mpc and density fluctuations δg<4\delta_g < 4 we measure the normalised growth rate fσ8(z=0.18)=0.29±0.10f\sigma_8(z = 0.18) = 0.29 \pm 0.10

    An Empirical Calibration of the Completeness of the SDSS Quasar Survey

    Get PDF
    Spectra of nearly 20000 point-like objects to a Galactic reddening corrected magnitude of i=19.1 have been obtained to test the completeness of the SDSS quasar survey. The spatially-unresolved objects were selected from all regions of color space, sparsely sampled from within a 278 sq. deg. area of sky covered by this study. Only ten quasars were identified that were not targeted as candidates by the SDSS quasar survey (including both color and radio source selection). The inferred density of unresolved quasars on the sky that are missed by the SDSS algorithm is 0.44 per sq. deg, compared to 8.28 per sq. deg. for the selected quasar density, giving a completeness of 94.9(+2.6,-3.8) to the limiting magnitude. Omitting radio selection reduces the color-only selection completeness by about 1%. Of the ten newly identified quasars, three have detected broad absorption line systems, six are significantly redder than other quasars at the same redshift, and four have redshifts between 2.7 and 3.0 (the redshift range where the SDSS colors of quasars intersect the stellar locus). The fraction of quasars missed due to image defects and blends is approximately 4%, but this number varies by a few percent with magnitude. Quasars with extended images comprise about 6% of the SDSS sample, and the completeness of the selection algorithm for extended quasars is approximately 81%, based on the SDSS galaxy survey. The combined end-to-end completeness for the SDSS quasar survey is approximately 89%. The total corrected density of quasars on the sky to i=19.1 is estimated to be 10.2 per sq. deg.Comment: 37 pages, 10 figures, accepted for publication in A

    Ultraviolet number counts of galaxies from Swift UV/Optical Telescope deep imaging of the Chandra Deep Field South

    Full text link
    Deep Swift UV/Optical Telescope (UVOT) imaging of the Chandra Deep Field South is used to measure galaxy number counts in three near ultraviolet (NUV) filters (uvw2: 1928 A, uvm2: 2246 A, uvw1: 2600 A) and the u band (3645 A). UVOT observations cover the break in the slope of the NUV number counts with greater precision than the number counts by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) and the Galaxy Evolution Explorer (GALEX), spanning a range from 21 < m_AB < 25. Number counts models confirm earlier investigations in favoring models with an evolving galaxy luminosity function.Comment: 20 pages, 6 figures, accepted to Ap

    The-wiZZ: Clustering redshift estimation for everyone

    Get PDF
    We present The-wiZZ, an open source and user-friendly software for estimating the redshift distributions of photometric galaxies with unknown redshifts by spatially cross-correlating them against a reference sample with known redshifts. The main benefit of The-wiZZ is in separating the angular pair finding and correlation estimation from the computation of the output clustering redshifts allowing anyone to create a clustering redshift for their sample without the intervention of an "expert". It allows the end user of a given survey to select any sub-sample of photometric galaxies with unknown redshifts, match this sample's catalog indices into a value-added data file, and produce a clustering redshift estimation for this sample in a fraction of the time it would take to run all the angular correlations needed to produce a clustering redshift. We show results with this software using photometric data from the Kilo-Degree Survey (KiDS) and spectroscopic redshifts from the Galaxy and Mass Assembly (GAMA) survey and the Sloan Digital Sky Survey (SDSS). The results we present for KiDS are consistent with the redshift distributions used in a recent cosmic shear analysis from the survey. We also present results using a hybrid machine learning-clustering redshift analysis that enables the estimation of clustering redshifts for individual galaxies. The-wiZZ can be downloaded at http://github.com/morriscb/The-wiZZ/

    Galaxy And Mass Assembly (GAMA) blended spectra catalogue: strong galaxy-galaxy lens and occulting galaxy pair candidates

    Get PDF
    We present the catalogue of blended galaxy spectra from the Galaxy And Mass Assembly (GAMA) survey. These are cases where light from two galaxies are significantly detected in a single GAMA fibre. Galaxy pairs identified from their blended spectrum fall into two principal classes: they are either strong lenses, a passive galaxy lensing an emission-line galaxy; or occulting galaxies, serendipitous overlaps of two galaxies, of any type. Blended spectra can thus be used to reliably identify strong lenses for follow-up observations (high-resolution imaging) and occulting pairs, especially those that are a late-type partly obscuring an early-type galaxy which are of interest for the study of dust content of spiral and irregular galaxies. The GAMA survey setup and its AUTOZ automated redshift determination were used to identify candidate blended galaxy spectra from the cross-correlation peaks. We identify 280 blended spectra with a minimum velocity separation of 600 km s−1, of which 104 are lens pair candidates, 71 emission-line-passive pairs, 78 are pairs of emission-line galaxies and 27 are pairs of galaxies with passive spectra. We have visually inspected the candidates in the Sloan Digital Sky Survey (SDSS) and Kilo Degree Survey (KiDS) images. Many blended objects are ellipticals with blue fuzz (Ef in our classification). These latter ‘Ef’ classifications are candidates for possible strong lenses, massive ellipticals with an emission-line galaxy in one or more lensed images. The GAMA lens and occulting galaxy candidate samples are similar in size to those identified in the entire SDSS. This blended spectrum sample stands as a testament of the power of this highly complete, second-largest spectroscopic survey in existence and offers the possibility to expand e.g. strong gravitational lens surveys

    Red riding on hood: Exploring how galaxy colour depends on environment

    Get PDF
    Galaxy populations are known to exhibit a strong colour bimodality, corresponding to blue star-forming and red quiescent subpopulations. The relative abundance of the two populations has been found to vary with stellar mass and environment. In this paper, we explore the effect of environment considering different types of measurements. We choose a sample of 49,91149, 911 galaxies with 0.05<z<0.180.05 < z < 0.18 from the Galaxy And Mass Assembly survey. We study the dependence of the fraction of red galaxies on different measures of the local environment as well as the large-scale "geometric" environment defined by density gradients in the surround- ing cosmic web. We find that the red galaxy fraction varies with the environment at fixed stellar mass. The red fraction depends more strongly on local environmental measures than on large-scale geometric environment measures. By comparing the different environmental densities, we show that no density measurement fully explains the observed environmental red fraction variation, suggesting the different measures of environmental density contain different information. We test whether the local environmental measures, when combined together, can explain all the observed environmental red fraction variation. The geometric environment has a small residual effect, and this effect is larger for voids than any other type of geometric environment. This could provide a test of the physics applied to cosmological-scale galaxy evolution simulations as it combines large-scale effects with local environmental impact.Comment: Accepted for publication in MNRAS; 16 pages; 10 figures; 2 tables

    Welcome to the House of Fun: Work Space and Social Identity

    Get PDF
    Following the diffusion of HRM as the dominant legitimating managerial ideology, some employers have started to see the built working environment as a component in managing organisational culture and employee commitment. A good example is where the work space is designed to support a range of officially encouraged ‘fun’ activities at work. Drawing on recent research literature and from media reports of contemporary developments, this paper explores the consequences of such developments for employees’ social identity formation and maintenance, with a particular focus on the office and customer service centre. Our analysis suggests that management’s attempts to determine what is deemed fun may not only be resented by workers because it intrudes on their existing private identities but also because it seeks to re-shape their values and expression
    corecore