98 research outputs found
Dovetail: Stronger Anonymity in Next-Generation Internet Routing
Current low-latency anonymity systems use complex overlay networks to conceal
a user's IP address, introducing significant latency and network efficiency
penalties compared to normal Internet usage. Rather than obfuscating network
identity through higher level protocols, we propose a more direct solution: a
routing protocol that allows communication without exposing network identity,
providing a strong foundation for Internet privacy, while allowing identity to
be defined in those higher level protocols where it adds value.
Given current research initiatives advocating "clean slate" Internet designs,
an opportunity exists to design an internetwork layer routing protocol that
decouples identity from network location and thereby simplifies the anonymity
problem. Recently, Hsiao et al. proposed such a protocol (LAP), but it does not
protect the user against a local eavesdropper or an untrusted ISP, which will
not be acceptable for many users. Thus, we propose Dovetail, a next-generation
Internet routing protocol that provides anonymity against an active attacker
located at any single point within the network, including the user's ISP. A
major design challenge is to provide this protection without including an
application-layer proxy in data transmission. We address this challenge in path
construction by using a matchmaker node (an end host) to overlap two path
segments at a dovetail node (a router). The dovetail then trims away part of
the path so that data transmission bypasses the matchmaker. Additional design
features include the choice of many different paths through the network and the
joining of path segments without requiring a trusted third party. We develop a
systematic mechanism to measure the topological anonymity of our designs, and
we demonstrate the privacy and efficiency of our proposal by simulation, using
a model of the complete Internet at the AS-level
Sensible Privacy: How We Can Protect Domestic Violence Survivors Without Facilitating Misuse
Privacy is a concept with real life ties and implications. Privacy infringement has the potential to lead to serious consequences for the stakeholders involved, hence researchers and organisations have developed various privacy enhancing techniques and tools. However, there is no solution that fits all, and there are instances where privacy solutions could be misused, for example to hide nefarious activities. Therefore, it is important to provide suitable measures and to make necessary design tradeoffs in order to avoid such misuse. This short paper aims to make a case for the need of careful consideration when designing a privacy solution, such that the design effectively addresses the user requirements while at the same time minimises the risk of inadvertently assisting potential offenders. In other words, this paper strives to promote “sensible privacy” design, which deals with the complex challenges in balancing privacy, usability and accountability. We illustrate this idea through a case study involving the design of privacy solutions for domestic violence survivors. This is the main contribution of the paper. The case study presents specific user requirements and operating conditions, which coupled with the attacker model, provide a complex yet interesting scenario to explore. One example of our solutions is described in detail to demonstrate the feasibility of our approach
Measurement of the Running of the Electromagnetic Coupling at Large Momentum-Transfer at LEP
The evolution of the electromagnetic coupling, alpha, in the
momentum-transfer range 1800GeV^2 < -Q^2 < 21600GeV^2 is studied with about
40000 Bhabha-scattering events collected with the L3 detector at LEP at
centre-of-mass energies 189-209GeV. The running of alpha is parametrised as:
alpha(Q^2) = alpha_0/(1-C Delta alpha(Q^2)), where alpha_0=\alpha(Q^2=0) is the
fine-structure constant and C=1 corresponds to the evolution expected in QED. A
fit to the differential cross section of the e+e- ->e+e- process for scattering
angles in the range |cos theta|<0.9 excludes the hypothesis of a constant value
of alpha, C=0, and validates the QED prediction with the result: C = 1.05 +/-
0.07 +/- 0.14, where the first uncertainty is statistical and the second
systematic
Toward a 21st-century health care system: Recommendations for health care reform
The coverage, cost, and quality problems of the U.S. health care system are evident. Sustainable health care reform must go beyond financing expanded access to care to substantially changing the organization and delivery of care. The FRESH-Thinking Project (www.fresh-thinking.org) held a series of workshops during which physicians, health policy experts, health insurance executives, business leaders, hospital administrators, economists, and others who represent diverse perspectives came together. This group agreed that the following 8 recommendations are fundamental to successful reform: 1. Replace the current fee-for-service payment system with a payment system that encourages and rewards innovation in the efficient delivery of quality care. The new payment system should invest in the development of outcome measures to guide payment. 2. Establish a securely funded, independent agency to sponsor and evaluate research on the comparative effectiveness of drugs, devices, and other medical interventions. 3. Simplify and rationalize federal and state laws and regulations to facilitate organizational innovation, support care coordination, and streamline financial and administrative functions. 4. Develop a health information technology infrastructure with national standards of interoperability to promote data exchange. 5. Create a national health database with the participation of all payers, delivery systems, and others who own health care data. Agree on methods to make de-identified information from this database on clinical interventions, patient outcomes, and costs available to researchers. 6. Identify revenue sources, including a cap on the tax exclusion of employer-based health insurance, to subsidize health care coverage with the goal of insuring all Americans. 7. Create state or regional insurance exchanges to pool risk, so that Americans without access to employer-based or other group insurance could obtain a standard benefits package through these exchanges. Employers should also be allowed to participate in these exchanges for their employees' coverage. 8. Create a health coverage board with broad stakeholder representation to determine and periodically update the affordable standard benefit package available through state or regional insurance exchanges
Recommended from our members
Epstein-Barr virus: clinical and epidemiological revisits and genetic basis of oncogenesis
Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancie
Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV
Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7 fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale
Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV
Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values
A Synchronous Multicast Application for Asymmetric Intra-campus Networks: Definition, Analysis and Evaluation
Recommended from our members
Assessing the Vulnerability of Replicated Network Services
Client-server networks are pervasive, fundamental, and include such key networks as the Internet, power grids, and road networks. In a client-server network, clients obtain a service by connecting to one of a redundant set of servers. These networks are vulnerable to node and link failures, causing some clients to become disconnected from the servers. We develop algorithms that quantify and bound the inherent vulnerability of a client-server network using semidefinite programming (SDP) and branch-and-cut techniques. Further, we develop a divide-and-conquer algorithm that solves the problem for large graphs. We use these techniques to show that: for the Philippine Power Grid removing just over 6% of the transmission lines will disconnect at least 20% but not more than 50% of the substations from all generators; on a large wireless mesh network disrupting 5% of wireless links between relays removes Internet access for half the relays; even after any 16% of Tier 2 ASes are removed, more than 50% of the remaining Tier 2 ASes will be connected to the Tier 1 backbone; when 300 roadblocks are erected in Michigan, it’s possible to disconnect 28–43% of the population from all airports
- …