6 research outputs found
Renormalizing Partial Differential Equations
In this review paper, we explain how to apply Renormalization Group ideas to
the analysis of the long-time asymptotics of solutions of partial differential
equations. We illustrate the method on several examples of nonlinear parabolic
equations. We discuss many applications, including the stability of profiles
and fronts in the Ginzburg-Landau equation, anomalous scaling laws in
reaction-diffusion equations, and the shape of a solution near a blow-up point.Comment: 34 pages, Latex; [email protected]; [email protected]
A system of ODEs for a Perturbation of a Minimal Mass Soliton
We study soliton solutions to a nonlinear Schrodinger equation with a
saturated nonlinearity. Such nonlinearities are known to possess minimal mass
soliton solutions. We consider a small perturbation of a minimal mass soliton,
and identify a system of ODEs similar to those from Comech and Pelinovsky
(2003), which model the behavior of the perturbation for short times. We then
provide numerical evidence that under this system of ODEs there are two
possible dynamical outcomes, which is in accord with the conclusions of
Pelinovsky, Afanasjev, and Kivshar (1996). For initial data which supports a
soliton structure, a generic initial perturbation oscillates around the stable
family of solitons. For initial data which is expected to disperse, the finite
dimensional dynamics follow the unstable portion of the soliton curve.Comment: Minor edit