111 research outputs found
Trapping Horizons in the Sultana-Dyer Space-Time
The Sultana-Dyer space-time is suggested as a model describing a black hole
embedded in an expanding universe. Recently, in \cite{0705.4012}, its global
structure is analyzed and the trapping horizons are shown. In the paper, by
directly calculating the expansions of the radial null vector fields normal to
the space-like two-spheres foliating the trapping horizons, we find that the
trapping horizon outside the event horizon in the Sultana-Dyer space-time is a
past trapping horizon. Further, we find that the past trapping horizon is an
outer, instantaneously degenerate or inner trapping horizon accordingly when
the radial coordinate is less than, equal to or greater than some value.Comment: no figures, 5 pages; PCAS and key words are adde
Application of Time Transfer Function to McVittie Spacetime: Gravitational Time Delay and Secular Increase in Astronomical Unit
We attempt to calculate the gravitational time delay in a time-dependent
gravitational field, especially in McVittie spacetime, which can be considered
as the spacetime around a gravitating body such as the Sun, embedded in the
FLRW (Friedmann-Lema\^itre-Robertson-Walker) cosmological background metric. To
this end, we adopt the time transfer function method proposed by Le
Poncin-Lafitte {\it et al.} (Class. Quant. Grav. 21:4463, 2004) and Teyssandier
and Le Poncin-Lafitte (Class. Quant. Grav. 25:145020, 2008), which is
originally related to Synge's world function and enables to
circumvent the integration of the null geodesic equation. We re-examine the
global cosmological effect on light propagation in the solar system. The
round-trip time of a light ray/signal is given by the functions of not only the
spacial coordinates but also the emission time or reception time of light
ray/signal, which characterize the time-dependency of solutions. We also apply
the obtained results to the secular increase in the astronomical unit, reported
by Krasinsky and Brumberg (Celest. Mech. Dyn. Astron. 90:267, 2004), and we
show that the leading order terms of the time-dependent component due to
cosmological expansion is 9 orders of magnitude smaller than the observed value
of , i.e., ~[m/century]. Therefore, it is not possible
to explain the secular increase in the astronomical unit in terms of
cosmological expansion.Comment: 13 pages, 2 figures, accepted for publication in General Relativity
and Gravitatio
High-Speed Cylindrical Collapse of Two Perfect Fluids
In this paper, the study of the gravitational collapse of cylindrically
distributed two perfect fluid system has been carried out. It is assumed that
the collapsing speeds of the two fluids are very large. We explore this
condition by using the high-speed approximation scheme. There arise two cases,
i.e., bounded and vanishing of the ratios of the pressures with densities of
two fluids given by . It is shown that the high-speed approximation
scheme breaks down by non-zero pressures when are bounded
below by some positive constants. The failure of the high-speed approximation
scheme at some particular time of the gravitational collapse suggests the
uncertainity on the evolution at and after this time. In the bounded case, the
naked singularity formation seems to be impossible for the cylindrical two
perfect fluids. For the vanishing case, if a linear equation of state is used,
the high-speed collapse does not break down by the effects of the pressures and
consequently a naked singularity forms. This work provides the generalisation
of the results already given by Nakao and Morisawa [1] for the perfect fluid.Comment: 11 pages, 1 figure, accepted for publication in Gen. Rel. Gra
Physical interpretation of gauge invariant perturbations of spherically symmetric space-times
By calculating the Newman-Penrose Weyl tensor components of a perturbed
spherically symmetric space-time with respect to invariantly defined classes of
null tetrads, we give a physical interpretation, in terms of gravitational
radiation, of odd parity gauge invariant metric perturbations. We point out how
these gauge invariants may be used in setting boundary and/or initial
conditions in perturbation theory.Comment: 6 pages. To appear in PR
Gravitational Collapse of Null Radiation and a String fluid
We consider the end state of collapsing null radiation with a string fluid.
It is shown that, if diffusive transport is assumed for the string, that a
naked singularity can form (at least locally). The model has the advantage of
not being asymptotically flat. We also analyse the case of a radiation-string
two-fluid and show that a locally naked singularity can result in the collapse
of such matter. We contrast this model with that of strange quark matter.Comment: RevTeX 4.0 (8 pages - no figures). submitted to Phys Rev D. Some
changes to abstract, introduction and conclusion - references update
Cosmological expansion and local systems: a Lema\^{i}tre-Tolman-Bondi model
We propose a Lema\^{i}tre-Tolman-Bondi system mimicking a two-body system to
address the problem of the cosmological expansion versus local dynamics. This
system is strongly bound but participates in the cosmic expansion and is
exactly comoving with the cosmic substratum
Higher dimensional radiation collapse and cosmic censorship
We study the occurrence of naked singularities in the spherically symmetric
collapse of radiation shells in a higher dimensional spacetime. The necessary
conditions for the formation of a naked singularity or a black hole are
obtained. The naked singularities are found to be strong in the Tipler's sense
and thus violating cosmic censorship conjecture.Comment: 4 pages, ReVTeX, Phys Rev D Vol 62 107502 (2000
Why do naked singularities form in gravitational collapse?
We investigate what are the key physical features that cause the development
of a naked singularity, rather than a black hole, as the end-state of spherical
gravitational collapse. We show that sufficiently strong shearing effects near
the singularity delay the formation of the apparent horizon. This exposes the
singularity to an external observer, in contrast to a black hole, which is
hidden behind an event horizon due to the early formation of an apparent
horizon.Comment: revised for clarity, new figure included; version accepted by Phys.
Rev. D (RC
Classical and quantum properties of a 2-sphere singularity
Recently Boehmer and Lobo have shown that a metric due to Florides, which has
been used as an interior Schwarzschild solution, can be extended to reveal a
classical singularity that has the form of a two-sphere. Here the singularity
is shown to be a scalar curvature singularity that is both timelike and
gravitationally weak. It is also shown to be a quantum singularity because the
Klein-Gordon operator associated with quantum mechanical particles approaching
the singularity is not essentially self-adjoint.Comment: 10 pages, 1 figure, minor corrections, final versio
Dynamics of Non-adiabatic Charged Cylindrical Gravitational Collapse
This paper is devoted to study the dynamics of gravitational collapse in the
Misner and Sharp formalism. We take non-viscous heat conducting charged
anisotropic fluid as a collapsing matter with cylindrical symmetry. The
dynamical equations are derived and coupled with the transport equation for
heat flux obtained from the Mller-Israel-Stewart causal thermodynamic
theory. We discuss the role of anisotropy, electric charge and radial heat flux
over the dynamics of the collapse with the help of coupled equation.Comment: 15 pages, accepted for publication in Astrophys. Space Sc
- …