35 research outputs found
A RECENT REVIEW ON NASAL MICROEMULSION FOR TREATMENT OF CNS DISORDER
Nasal route is found to be valuable for targeting drugs to CNS via a different mechanism. The advantages, disadvantages, various aspects of nasal anatomy and physiology, mechanism of drug transport from nose brain, drug selection criteria to cross BBB/Blood-CSF barrier are discussed briefly. Nowadays many drugs have better systemic bioavailability through nasal route as compared to oral administration. In addition, intranasal drug delivery enables dose reduction, rapid attainment of therapeutic blood levels, quicker onset of pharmacological activity, and fewer side effects. There are various approaches in delivering a therapeutic substance to the target site. One such approach is using microemulsion as a carrier for the drug. The main purpose of this study is the use of microemulsion technology in drug targeting to the brain along with mechanism of the nose to brain transport, formulation and formation of the microemulsion and its characterization
Design Development and Evaluation of Agomelatine Microemulsion for Intranasal Delivery
The purpose of this study was to develop and optimize microemulsion containing agomelatine for intranasal delivery. Agomelatine, an antidepressant drug, has absolute bioavailability of only 5% due to high first pass metabolism. Agomelatine microemulsion and were prepared by titration method. Ternary phase diagram gave the microemulsion region and the concentration of oil; Smix and water were selected from ternary phase diagram. Based on solubility study, oleic acid, tween 80 and propylene glycol were selected as oil, surfactant and co surfactant respectively. Microemulsions were prepared using water titration method. 1:1% v/v ratio (Tween 80: Propylene glycol) was selected for formulation development. The prepared microemulsions were optimized optical transparency, viscosity measurement, phase separation, determination of pH, measurement of globule size, measurement of zeta potential, drug content, In vitro diffusion study, stability studies. The optimized batch was further characterized for optical transparency, viscosity measurement, phase separation, determination of pH, measurement of globule size, measurement of zeta potential, drug content, In vitro diffusion study, stability studies.
Keywords: Depression, Intranasal, Microemulsions, Agomelatin
Using regulatory variants to detect gene-gene interactions identifies networks of genes linked to cell immortalization
The extent to which the impact of regulatory genetic variants may depend on other factors, such as the expression levels of upstream transcription factors, remains poorly understood. Here we report a framework in which regulatory variants are first aggregated into sets, and using these as estimates of the total cis-genetic effects on a gene we model their non-additive interactions with the expression of other genes in the genome. Using 1220 lymphoblastoid cell lines across platforms and independent datasets we identify 74 genes where the impact of their regulatory variant-set is linked to the expression levels of networks of distal genes. We show that these networks are predominantly associated with tumourigenesis pathways, through which immortalised cells are able to rapidly proliferate. We consequently present an approach to define gene interaction networks underlying important cellular pathways such as cell immortalisation