141,943 research outputs found

    Remote Camera and Trapping Survey of the Deep-water Shrimps Heterocarpus laevigatus and H. ensifer and the Geryonid Crab Chaceon granulatus in Palau

    Get PDF
    Time-lapse remote photo-sequences at 73-700 m depth off Palau, Western Caroline Islands, show that the caridean shrimp Heterocarpus laevigatus tends to be a solitary animal, occurring below ~350 m, that gradually accumulates around bait sites over a prolonged period. A smaller speies, H. ensifer, tends to move erratically in swarms, appearing in large numbers in the upper part of its range (<250 m) during the evening crepuscular period and disappearing at dawn. Trapping and photsequence data indicate the depth range of H. ensifer (during daylight) is ~250-550 M, while H. laevigatus ranges from 350 m to at least 800 m, along with the geryonid crab Chaceon granulatus. Combined trapping for Heterocarpus laevigatus and Chaceon granulatus, using a three-chamber box-trap and extended soak times (48-72 hr), may be an appropriate technique for small-scale deep-water fisheries along forereef slopes of Indo-Pacific archipelagoes

    Wind-tunnel tests of wide-chord teetering rotors with and without outboard flapping hinges

    Get PDF
    Wind tunnel tests of aeroelastically designed helicopter rotor models were conducted to obtain rotor aerodynamic performance and dynamic response data pertaining to two-bladed teetering rotors with a wider chord and lower hover tip speed than currently employed on production helicopters. The effects of a flapping hinge at 62 percent radius were also studied. Finally, the effects of changing tip mass on operating characteristics of the rotor with the outboard flapping hinge were examined. The models were tested at several shaft angles of attack for five advance ratios, 0.15, 0.25, 0.35, 0.40, and 0.45. For each combination of shaft angle and advance ratio, the rotor lift was varied over a wide range to include simulated maneuver conditions. At each test condition, rotor aerodynamic performance and dynamic response data were obtained. From these tests, it was found that wide-chord rotors may be subject to large control forces. An outboard flapping hinge may be used to reduce beamwise bending moments over a significant part of the blade radius without significantly affecting the chordwise bending moments

    Origin of Superconductivity in Boron-doped Diamond

    Full text link
    Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger than the corresponding quantity in MgB2 that drives its high Tc, leading to very large electron-phonon matrix elements. The calculated coupling strength \lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T_c somewhat, but effects of three dimensionality primarily on the density of states keep doped diamond from having a T_c closer to that of MgB2.Comment: Four pages with two embedded figures, corrected fig1. (To appear in Physical Review Letters(2004)

    Dirac's Observables for the SU(3)XSU(2)XU(1) Standard Model

    Get PDF
    The complete, missing, Hamiltonian treatment of the standard SU(3)xSU(2)xU(1) model with Grassmann-valued fermion fields in the Higgs phase is given. We bypass the complications of the Hamiltonian theory in the Higgs phase, resulting from the spontaneous symmetry breaking with the Higgs mechanism, by studying the Hamiltonian formulation of the Higgs phase for the gauge equivalent Lagrangian in the unitary gauge. A canonical basis of Dirac's observables is found and the reduced physical Hamiltonian is evaluated. Its self-energy part is nonlocal for the electromagnetic and strong interactions, but local for the weak ones. Therefore, the Fermi 4-fermion interaction reappears at the nonperturbative level.Comment: 90 pages, RevTeX, no figure

    Uses of a small field value which falls from a metastable maximum over cosmological times

    Full text link
    We consider a small, metastable maximum vacuum expectation value b0b_0 of order of a few eV, for a pseudoscalar Goldstone-like field, which is related to the scalar inflaton field ϕ\phi in an idealized model of a cosmological, spontaneously-broken chiral symmetry. The b field allows for relating semi-quantitatively three distinct quantities in a cosmological context. (1) A very small, residual vacuum energy density or effective cosmological constant of ~ lambda b_0^4 ~ 2.7 x 10^{-47}GeV^4, for lambda ~ 3 x 10^{-14}, the same as an empirical inflaton self-coupling. (2) A tiny neutrino mass, less then b_0. (3) A possible small variation downward of the proton to electron mass ratio over cosmological time. The latter arises from the motion downward of the bb field over cosmological time, toward a nonzero limiting value as tt \to \infty. Such behavior is consistent with an equation of motion. We argue that hypothetical b quanta, potentially inducing new long-range forces, are absent, because of negative, effective squared mass in an equation of motion for bb-field fluctuations.Comment: version accepted for publication in Mod.Phys.Lett.

    ``Superfast'' Reaction in Turbulent Flow with Potential Disorder

    Full text link
    We explore the regime of ``superfast'' reactivity that has been predicted to occur in turbulent flow in the presence of potential disorder. Computer simulation studies confirm qualitative features of the previous renormalization group predictions, which were based on a static model of turbulence. New renormalization group calculations for a more realistic, dynamic model of turbulence show that the superfast regime persists. This regime, with concentration decay exponents greater than that for a well-mixed reaction, appears to be a general result of the interplay among non-linear reaction kinetics, turbulent transport, and local trapping by potential disorder.Comment: 14 pages. 4 figures. Uses IOP styles. To appear in J. Phys. A: Math. Ge

    Inverse Modelling to Obtain Head Movement Controller Signal

    Get PDF
    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements
    corecore