1,391 research outputs found

    Metastable state en route to traveling-wave synchronization state

    Full text link
    The Kuramoto model with mixed signs of couplings is known to produce a traveling-wave synchronized state. Here, we consider an abrupt synchronization transition from the incoherent state to the traveling-wave state through a long-lasting metastable state with large fluctuations. Our explanation of the metastability is that the dynamic flow remains within a limited region of phase space and circulates through a few active states bounded by saddle and stable fixed points. This complex flow generates a long-lasting critical behavior, a signature of a hybrid phase transition. We show that the long-lasting period can be controlled by varying the density of inhibitory/excitatory interactions. We discuss a potential application of this transition behavior to the recovery process of human consciousness

    Two Types of Discontinuous Percolation Transitions in Cluster Merging Processes

    Full text link
    Percolation is a paradigmatic model in disordered systems and has been applied to various natural phenomena. The percolation transition is known as one of the most robust continuous transitions. However, recent extensive studies have revealed that a few models exhibit a discontinuous percolation transition (DPT) in cluster merging processes. Unlike the case of continuous transitions, understanding the nature of discontinuous phase transitions requires a detailed study of the system at hand, which has not been undertaken yet for DPTs. Here we examine the cluster size distribution immediately before an abrupt increase in the order parameter of DPT models and find that DPTs induced by cluster merging kinetics can be classified into two types. Moreover, the type of DPT can be determined by the key characteristic of whether the cluster kinetic rule is homogeneous with respect to the cluster sizes. We also establish the necessary conditions for each type of DPT, which can be used effectively when the discontinuity of the order parameter is ambiguous, as in the explosive percolation model.Comment: 9 pages, 6 figure

    Quantum Dot and Hole Formation in Sputter Erosion

    Full text link
    Recently it was experimentally demonstrated that sputtering under normal incidence leads to the formation of spatially ordered uniform nanoscale islands or holes. Here we show that these nanostructures have inherently nonlinear origin, first appearing when the nonlinear terms start to dominate the surface dynamics. Depending on the sign of the nonlinear terms, determined by the shape of the collision cascade, the surface can develop regular islands or holes with identical dynamical features, and while the size of these nanostructures is independent of flux and temperature, it can be modified by tuning the ion energy
    • …
    corecore