13,038 research outputs found

    Rotating Superconductors and the London Moment: Thermodynamics versus Microscopics

    Full text link
    Comparing various microscopic theories of rotating superconductors to the conclusions of thermodynamic considerations, we traced their marked difference to the question of how some thermodynamic quantities (the electrostatic and chemical potentials) are related to more microscopic ones: The electron's the work function, mean-field potential and Fermi energy -- certainly a question of general import. After the correct identification is established, the relativistic correction for the London Moment is shown to vanish, with the obvious contribution from the Fermi velocity being compensated by other contributions such as electrostatics and interactions.Comment: 23 pages 4 fi

    A WIMP Detector with Two-Phase Liquid Xenon

    Get PDF
    We describe the liquid-xenon dark-matter detector program of the UCLA-Torino team. A two-phase detector, ZEPLIN II, for the Boulby Mine is a good match for the current search for WIMP dark matter.Comment: 3 pages with 4 figures; for Proceedings, Sixth Int'l Wksp. On Topics in Astroparticle and Underground Physics, TAUP99 (College de France, Paris, Sept. 6-10, 1999), to be published in Nucl. Phys. B(PS

    The power of low-resolution spectroscopy: On the spectral classification of planet candidates in the ground-based CoRoT follow-up

    Full text link
    Planetary transits detected by the CoRoT mission can be mimicked by a low-mass star in orbit around a giant star. Spectral classification helps to identify the giant stars and also early-type stars which are often excluded from further follow-up. We study the potential and the limitations of low-resolution spectroscopy to improve the photometric spectral types of CoRoT candidates. In particular, we want to study the influence of the signal-to-noise ratio (SNR) of the target spectrum in a quantitative way. We built an own template library and investigate whether a template library from the literature is able to reproduce the classifications. Including previous photometric estimates, we show how the additional spectroscopic information improves the constraints on spectral type. Low-resolution spectroscopy (RR\approx1000) of 42 CoRoT targets covering a wide range in SNR (1-437) and of 149 templates was obtained in 2012-2013 with the Nasmyth spectrograph at the Tautenburg 2m telescope. Spectral types have been derived automatically by comparing with the observed template spectra. The classification has been repeated with the external CFLIB library. The spectral class obtained with the external library agrees within a few sub-classes when the target spectrum has a SNR of about 100 at least. While the photometric spectral type can deviate by an entire spectral class, the photometric luminosity classification is as close as a spectroscopic classification with the external library. A low SNR of the target spectrum limits the attainable accuracy of classification more strongly than the use of external templates or photometry. Furthermore we found that low-resolution reconnaissance spectroscopy ensures that good planet candidates are kept that would otherwise be discarded based on photometric spectral type alone.Comment: accepted for publication in Astronomische Nachrichten; 12 pages, 4 figures, 7 table

    Nonlinear spin-polarized transport through a ferromagnetic domain wall

    Get PDF
    A domain wall separating two oppositely magnetized regions in a ferromagnetic semiconductor exhibits, under appropriate conditions, strongly nonlinear I-V characteristics similar to those of a p-n diode. We study these characteristics as functions of wall width and temperature. As the width increases or the temperature decreases, direct tunneling between the majority spin bands decreases the effectiveness of the diode. This has important implications for the zero-field quenched resistance of magnetic semiconductors and for the design of a recently proposed spin transistor.Comment: 5 pages, 3 figure