49,817 research outputs found
Towards understanding Regge trajectories in holographic QCD
We reassess a work done by Migdal on the spectrum of low-energy vector mesons
in QCD in the light of the AdS-QCD correspondence. Recently, a tantalizing
parallelism was suggested between Migdal's work and a family of holographic
duals of QCD. Despite the intriguing similarities, both approaches face a major
drawback: the spectrum is in conflict with well-tested Regge scaling. However,
it has recently been shown that holographic duals can be modified to accomodate
Regge behavior. Therefore, it is interesting to understand whether Regge
behavior can also be achieved in Migdal's approach. In this paper we
investigate this issue. We find that Migdal's approach, which is based on a
modified Pade approximant, is closely related to the issue of quark-hadron
duality breakdown in QCD.Comment: 17 pages, 1 figure. Typos fixed, references added, improved
discussion. Minor changes to match the journal versio
Application of a helicopter mathematical model to the Langley differential maneuvering simulator for use in a helicopter/fighter evasive maneuver study
A real time simulation study was conducted using a differential maneuvering simulator to determine and evaluate helicopter evasive maneuvers when attacked by fighter aircraft. A general helicopter mathematical model was modified to represent an H-53 helicopter. The helicopter model was compared to H-53 flight test data to determine any differences between the simulated and actual vehicles. The simulated helicopter was also subjectively validated by participating pilots. Two fighter mathematical models validated in previous studies were utilized for the attacking aircraft. The results of this simulation study have been verified in a flight test program conducted by the U. S. Air Force and were found to closely match the flight results
Plunge waveforms from inspiralling binary black holes
We study the coalescence of non-spinning binary black holes from near the
innermost stable circular orbit down to the final single rotating black hole.
We use a technique that combines the full numerical approach to solve Einstein
equations, applied in the truly non-linear regime, and linearized perturbation
theory around the final distorted single black hole at later times. We compute
the plunge waveforms which present a non negligible signal lasting for showing early non-linear ringing, and we obtain estimates for the total
gravitational energy and angular momentum radiated.Comment: Corrected typos in the radiated ang momentum and frequenc
Quasars in the 2MASS Second Incremental Data Release
Using the 2MASS Second Incremental Data Release, we have searched for near
infrared counterparts to 13214 quasars from the Veron-Cetty & Veron(2000)
catalog. We have detected counterparts within 4 arcsec for 2277 of the
approximately 6320 quasars within the area covered by the 2MASS Second
Incremental Data Release. Only 1.6% of these are expected to be chance
coincidences. Though this sample is heterogeneous, we find that known
radio-loud quasars are more likely to have large near-infrared-to-optical
luminosity ratios than radio-quiet quasars are, at a statistically significant
level. This is consistent with dust-reddened quasars being more common in
radio-selected samples than in optically-selected samples, due to stronger
selection effects against dust-reddened quasars in the latter. We also find a
statistically significant dearth of optically luminous quasars with large
near-infrared-to-optical luminosity ratios. This can be explained in a dust
obscuration model but not in a model where synchrotron emission extends from
the radio into the near-infrared and creates such large ratios. We also find
that selection of quasar candidates from the B-J/J-K color-color diagram,
modelled on the V-J/J-K selection method of Warren, Hewett & Foltz (2000), is
likely to be more sensitive to dust-obscured quasars than selection using only
infrared-infrared colors.Comment: To be published in May issue of Astronomical Journal (26 pages, 8
figures, 2 tables) Replaced Figure 6 and
Network traffic analysis for threats detection in the Internet of Things
As the prevalence of the Internet of Things (IoT) continues to increase, cyber criminals are quick to exploit the security gaps that many devices are inherently designed with. Users cannot be expected to tackle this threat alone, and many current solutions available for network monitoring are simply not accessible or can be difficult to implement for the average user, which is a gap that needs to be addressed. This article presents an effective signature-based solution to monitor, analyze, and detect potentially malicious traffic for IoT ecosystems in the typical home network environment by utilizing passive network sniffing techniques and a cloud application to monitor anomalous activity. The proposed solution focuses on two attack and propagation vectors leveraged by the infamous Mirai botnet, namely DNS and Telnet. Experimental evaluation demonstrates the proposed solution can detect 98.35 percent of malicious DNS traffic and 99.33 percent of Telnet traffic for an overall detection accuracy of 98.84 percent
Azumaya Objects in Triangulated Bicategories
We introduce the notion of Azumaya object in general homotopy-theoretic
settings. We give a self-contained account of Azumaya objects and Brauer groups
in bicategorical contexts, generalizing the Brauer group of a commutative ring.
We go on to describe triangulated bicategories and prove a characterization
theorem for Azumaya objects therein. This theory applies to give a homotopical
Brauer group for derived categories of rings and ring spectra. We show that the
homotopical Brauer group of an Eilenberg-Mac Lane spectrum is isomorphic to the
homotopical Brauer group of its underlying commutative ring. We also discuss
tilting theory as an application of invertibility in triangulated bicategories.Comment: 23 pages; final version; to appear in Journal of Homotopy and Related
Structure
Recommended from our members
Lithium and carbon isotopic fractionations between the alteration assemblages of Nakhla and Lafayette
Nakhla and Lafayette delta 7Li values for samples and extracts (4.1-14.2�) are consistent with brine evaporation. Relatively 13C-poor siderite in Lafayette suggests more than one carbon source was sampled
Signatures of Interchange Reconnection: STEREO, ACE and Hinode Observations Combined
Combining STEREO, ACE and Hinode observations has presented an opportunity to
follow a filament eruption and coronal mass ejection (CME) on the 17th of
October 2007 from an active region (AR) inside a coronal hole (CH) into the
heliosphere. This particular combination of `open' and closed magnetic
topologies provides an ideal scenario for interchange reconnection to take
place. With Hinode and STEREO data we were able to identify the emergence time
and type of structure seen in the in-situ data four days later. On the 21st,
ACE observed in-situ the passage of an ICME with `open' magnetic topology. The
magnetic field configuration of the source, a mature AR located inside an
equatorial CH, has important implications for the solar and interplanetary
signatures of the eruption. We interpret the formation of an `anemone'
structure of the erupting AR and the passage in-situ of the ICME being
disconnected at one leg, as manifested by uni-directional suprathermal electron
flux in the ICME, to be a direct result of interchange reconnection between
closed loops of the CME originating from the AR and `open' field lines of the
surrounding CH.Comment: 13 pages, 13 figures, accepted Annales Geophysica
Binary black hole merger in the extreme mass ratio limit
We discuss the transition from quasi-circular inspiral to plunge of a system
of two nonrotating black holes of masses and in the extreme mass
ratio limit . In the spirit of the Effective One Body
(EOB) approach to the general relativistic dynamics of binary systems, the
dynamics of the two black hole system is represented in terms of an effective
particle of mass moving in a (quasi-)Schwarzschild
background of mass and submitted to an
radiation reaction force defined by Pad\'e resumming high-order Post-Newtonian
results. We then complete this approach by numerically computing, \`a la
Regge-Wheeler-Zerilli, the gravitational radiation emitted by such a particle.
Several tests of the numerical procedure are presented. We focus on
gravitational waveforms and the related energy and angular momentum losses. We
view this work as a contribution to the matching between analytical and
numerical methods within an EOB-type framework.Comment: 14 pages, six figures. Revised version. To appear in the CQG special
issue based around New Frontiers in Numerical Relativity conference, Golm
(Germany), July 17-21 200
- …