162 research outputs found

    Fluorine doping: A feasible solution to enhancing the conductivity of high-resistance wide bandgap Mg0.51Zn0.49O active components

    Full text link
    N-type doping of high-resistance wide bandgap semiconductors, wurtzite high-Mg-content MgxZn1-xO for instance, has always been a fundamental application-motivated research issue. Herein, we report a solution to enhancing the conductivity of high-resistance Mg0.51Zn0.49O active components, which has been reliably achieved by fluorine doping via radio-frequency plasma assisted molecular beam epitaxial growth. Fluorine dopants were demonstrated to be effective donors in Mg0.51Zn0.49O single crystal film having a solar-blind 4.43 eV bandgap, with an average concentration of 1.0E19 F/cm3.The dramatically increased carrier concentration (2.85E17 cm-3 vs ~1014 cm-3) and decreased resistivity (129 ohm.cm vs ~10E6 ohm cm) indicate that the electrical properties of semi-insulating Mg0.51Zn0.49O film can be delicately regulated by F doping. Interestingly, two donor levels (17 meV and 74 meV) associated with F were revealed by temperature-dependent Hall measurements. A Schottky type metal-semiconductor-metal ultraviolet photodetector manifests a remarkably enhanced photocurrent, two orders of magnitude higher than that of the undoped counterpart. The responsivity is greatly enhanced from 0.34 mA/W to 52 mA/W under 10 V bias. The detectivity increases from 1.89E9 cm Hz1/2/W to 3.58eE10 cm Hz1/2/W under 10 V bias at room temperature.These results exhibit F doping serves as a promising pathway for improving the performance of high-Mg-content MgxZn1-xO-based devices.Comment: 8 page

    Estimation of the Instantaneous Harmonic Parameters of Speech

    Get PDF
    Non

    The Effect of Atmospheric Pollution on Building Materials in the Urban Environment

    Get PDF
    Nowadays atmospheric pollution affects not only the urban environment in general, but building materials, which leads to their corrosion, in particular. The article discusses the regularities of the adhesion process of particulate matter (dust) on the vertical surfaces of buildings and structures, which are made of various building materials. On the basis of experimental studies, regression dependences of the adhesion of urban dust on different vertical surfaces from random determining factors were obtained. Thus, by studying the regularities of pollution of urban environment objects, made of various building materials, it is possible to achieve their preservation, since they demonstrate the architectural and design features of various historical periods of the country's development

    Silicon Kerf Recovery via Acid Leaching Followed by Melting at Elevated Temperatures

    Get PDF
    The aim of this work was to study the purification of silicon kerf loss waste (KLW) by a combination of single-acid leaching followed by inductive melting at high temperatures with an addition of fluidized bed reactor (FBR) silicon granules. The KLW indicated an average particle size (D50) of approximately 1.6 µm, and a BET surface area of 30.4 m2/g. Acid leaching by 1 M HCl indicated significant removal of impurities such as Ni (77%), Fe (91%) and P (75%). The combined two-stage treatment resulted in significant removal of the major impurities: Al (78%), Ni (79%), Ca (85%), P (92%) and Fe (99%). The general material loss during melting decreased with an increasing amount of FBR silicon granules which aided in the melting process and indicated better melting. It was observed that the melting behavior of the samples improved as the temperature increased, with complete melting being observed throughout the crucibles at the highest temperature (1800 °C) used, even without any additives. At lower temperatures (1600 °C–1700 °C) and lower FBR-Si (<30 wt.%) additions, the melting was incomplete, with patches of molten silicon and a lot of surface oxidation as confirmed by both visual observation and electron microscopy. In addition, it was indicated that more reactive and volatile elements (Ga, Mg and P) compared to silicon are partially removed in the melting process (51–87%), while the less reactive elements end up in the final silicon melt. It was concluded that if optimized, the combined treatment of single-acid leaching and inductive melting with the addition of granular FBR silicon has great potential for the recycling of KLW to solar cells and similar applications. Moreover, the application of higher melting temperatures is accompanied by a higher silicon yield of the process, and the involved mechanisms are presented.publishedVersio

    Thermal Conductivity of Double Polymorph Ga2O3 Structures

    Full text link
    Recently discovered double gamma/beta ({\gamma}/\b{eta}) polymorph Ga2O3 structures constitute a class of novel materials providing an option to modulate functional properties across interfaces without changing chemical compositions of materials, in contrast to that in conventional heterostructures. In this work, for the first time, we investigate thermal transport in such homo-interface structures as an example of their physical properties. Specifically, the cross-plane thermal conductivity (k) was measured by femtosecond laser-based time-domain thermoreflectance with MHz modulation rates, effectively obtaining depth profiles of the thermal conductivity across the {\gamma}/\b{eta}-Ga2O3 structures. In this way, the thermal conductivity of {\gamma}-Ga2O3 k=1.84{\div}2.11 W m-1K-1 was found to be independent of the initial \b{eta}-substrates orientations, in accordance with the cubic spinel structure of the {\gamma}-phase and consistently with the molecular dynamics simulation data. In its turn, the thermal conductivity of monoclinic \b{eta}-Ga2O3 showed a distinct anisotropy, with values ranging from 10 W m-1K-1 for [201] to 20 Wm-1K-1 for [010] orientations. Thus, for double {\gamma}/\b{eta} Ga2O3 polymorph structures formed on [010] \b{eta}-substrates, there is an order of magnitude difference in thermal conductivity across the {\gamma}/\b{eta} interface, which potentially can be exploited in thermal energy conversion applications

    Crystallization Instead of Amorphization in Collision Cascades in Gallium Oxide

    Full text link
    Disordering of solids typically leads to amorphization, but polymorph transitions, facilitated by favorable atomic rearrangements, may temporarily help to maintain long-range periodicity in the solid state. In far-from-equilibrium situations, such as atomic collision cascades, these rearrangements may not necessarily follow a thermodynamically gainful path, but may be kinetically limited. In this Letter, we focused on such crystallization instead of amorphization in collision cascades in gallium oxide (\ce{Ga2O3}). We determined the disorder threshold for irreversible β\beta-to-γ\gamma polymorph transition and explained why it results in elevating energy to that of the γ\gamma-polymorph, which exhibits the highest polymorph energy in the system below the amorphous state. Specifically, we demonstrate that upon reaching the disorder transition threshold, the \ce{Ga}-sublattice kinetically favors transitioning to the γ\gamma-like configuration, requiring significantly less migration for \ce{Ga} atoms to reach the lattice sites during post-cascade processes. As such, our data provide a consistent explanation of this remarkable phenomenon and can serve as a toolbox for predictive multi-polymorph fabrication.Comment: 6 pages, 4 figures, under revie

    Self-assembling of multilayered polymorphs with ion beams

    Full text link
    Polymorphism contributes to the diversity of nature, so that even materials having identical chemical compositions exhibit variations in properties because of different lattice symmetries. Thus, if stacked together into multilayers, polymorphs may work as an alternative approach to the sequential deposition of layers with different chemical compositions. However, selective polymorph crystallization during conventional thin film synthesis is not trivial; e.g. opting for step-like changes of temperature and/or pressure correlated with switching from one polymorph to another during synthesis is tricky, since it may cause degradation of the structural quality. In the present work, applying the disorder-induced ordering approach we fabricated such multilayered polymorph structures using ion beams. We show that during ion irradiation of gallium oxide, the dynamic annealing of disorder may be tuned towards self-assembling of several polymorph interfaces, consistently with theoretical modelling. Specifically, we demonstrated multilayers with two polymorph interface repetitions obtained in one ion beam assisted fabrication step. Importantly, single crystal structure of the polymorphs was maintained in between interfaces exhibiting repeatable crystallographic relationships, correlating with optical cross-sectional maps. This data paves the way for enhancing functionalities in materials with not previously thought capabilities of ion beam technology.Comment: 9 pages, 4 figure, under review, private communication for supplementary note

    Universal radiation tolerant semiconductor

    Full text link
    Radiation tolerance is determined as the ability of crystalline materials to withstand the accumulation of the radiation induced disorder. Nevertheless, for sufficiently high fluences, in all by far known semiconductors it ends up with either very high disorder levels or amorphization. Here we show that gamma/beta double polymorph Ga2O3 structures exhibit remarkably high radiation tolerance. Specifically, for room temperature experiments, they tolerate a disorder equivalent to hundreds of displacements per atom, without severe degradations of crystallinity; in comparison with, e.g., Si amorphizable already with the lattice atoms displaced just once. We explain this behavior by an interesting combination of the Ga- and O- sublattice properties in gamma-Ga2O3. In particular, O-sublattice exhibits a strong recrystallization trend to recover the face-centered-cubic stacking despite the stronger displacement of O atoms compared to Ga during the active periods of cascades. Notably, we also explained the origin of the beta-to-gamma Ga2O3 transformation, as a function of the increased disorder in beta-Ga2O3 and studied the phenomena as a function of the chemical nature of the implanted atoms. As a result, we conclude that gamma/beta double polymorph Ga2O3 structures, in terms of their radiation tolerance properties, benchmark a class of universal radiation tolerant semiconductors
    corecore