3 research outputs found

    Radioiodine Treatment for Benign Thyroid Diseases

    Get PDF
    Radioiodine (RAI) is becoming the preferred treating option for benign thyroid diseases. Hyperthyroidism is defined as hypermetabolic state caused by high levels of circulating thyroid hormones of the thyroid gland. The most common hyperthyroidism causes are Graves’ disease, toxic multinodular goitre, and solitary hyperfunctioning nodule, for which RAI can be preferred as a definitive treatment option. It is rapidly incorporated into the thyroid and with its beta emissions with a path length of 1–3 mm cause extensive local tissue damage and necrosis. The thyroid gland is effectively ablated over a period of 8–18 weeks and can no more produce normal amount of thyroid hormones. It is an individualized therapy that can either be a first-line therapy, or an alternative therapy to neck surgery or to use of antithyroidal drugs after 1 year. For the optimal efficiency, before the RAI treatment, the patients should be extensively assessed and they also should be given clear information about the treatment, as well as written instructions for precautions to avoid irradiation exposure to other people. Moreover, after RAI treatment patients should have their regular follow-up. This chapter summarizes all the points for a RAI treatment

    Current status of myocardial perfusion imaging radiopharmaceuticals for SPECT and PET imaging modalities

    Get PDF
    Coronary artery disease (CAD) is the leading cause of death and remains a major health problem worldwide. Myocardial perfusion imaging (MPI) with single photon emission tomography (SPECT) and positron emission tomography (PET) has been established as the main functional nuclear cardiology noninvasive technique for CAD over the past years. The studies has been shown that the use of MPI as a useful and important imaging modality for the diagnosis, risk stratification and treatment planning for CAD. The purpose of this article is to review properties of the radiopharmaceuticals used for myocardial perfusion imaging with SPECT and PET

    Current status of myocardial perfusion imaging radiopharmaceuticals for SPECT and PET imaging modalities

    No full text
    Coronary artery disease (CAD) is the leading cause of death and remains a major health problem worldwide. Myocardial perfusion imaging (MPI) with single photon emission tomography (SPECT) and positron emission tomography (PET) has been established as the main functional nuclear cardiology noninvasive technique for CAD over the past years. The studies has been shown that the use of MPI as a useful and important imaging modality for the diagnosis, risk stratification and treatment planning for CAD. The purpose of this article is to review properties of the radiopharmaceuticals used for myocardial perfusion imaging with SPECT and PET
    corecore