826 research outputs found

    Comparison of serum and bronchoalveolar lavage fluid sialic acid levels between malignant and benign lung diseases

    Get PDF
    BACKGROUND: It is known that tissue and serum sialic acid levels may be altered by malignant transformation. In this study, sialic acid levels were determined in bronchoalveolar lavage fluid (BAL) and serum in two groups of patients with lung cancer and non-malignant diseases of the lung. METHODS: Colorimetric methods were used for determination sialic acid in serum and in BAL samples. Flexible bronchoscopy was used to obtain the latter. RESULTS: Sialic acid levels in bronchoalveolar lavage fluid and serum did not show any statistically significant difference between subjects with malignant and the non-malignant lung diseases (p > 0.05). Sialic acid levels were also unrelated to the stage and localization of the tumor (p > 0.05). CONCLUSIONS: Sialic acid levels do not appear to be a good marker for discriminating malignant from non-malignant diseases of the lung

    FACET : a new long-lived particle detector in the very forward region of the CMS experiment

    Get PDF
    We describe a proposal to add a set of very forward detectors to the CMS experiment for the high-luminosity era of the Large Hadron Collider to search for beyond the standard model long-lived particles, such as dark photons, heavy neutral leptons, axion-like particles, and dark Higgs bosons. The proposed subsystem is called FACET for Forward-Aperture CMS ExTension, and will be sensitive to any particles that can penetrate at least 50 m of magnetized iron and decay in an 18 m long, 1 m diameter vacuum pipe. The decay products will be measured in detectors using identical technology to the planned CMS Phase-2 upgrade.Peer reviewe

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Search for resonances in events with photon and jet final states in proton-proton collisions at s = 13 TeV

    Get PDF
    A search for resonances in events with the γ+jet final state has been performed using proton-proton collision data collected at s = 13 TeV by the CMS experiment at the LHC. The total data analyzed correspond to an integrated luminosity of 138 fb−1. Models of excited quarks and quantum black holes are considered. Using a wide-jet reconstruction for the candidate jet, the γ+jet invariant mass spectrum measured in data is examined for the presence of resonances over the standard model continuum background. The background is estimated by fitting this mass distribution with a functional form. The data exhibit no statistically significant deviations from the expected standard model background. Exclusion limits at 95% confidence level on the resonance mass and other parameters are set. Excited light-flavor quarks (excited bottom quarks) are excluded up to a mass of 6.0 (3.8) TeV. Quantum black hole production is excluded for masses up to 7.5 (5.2) TeV in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model. These lower mass bounds are the most stringent to date among those obtained in the γ+jet final state

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb−1^{−1}. The inclusive fiducial cross section is measured to be σfidσ_{fid}=73.4−5.3+5.4^{+5.4}_{−5.3}(stat)−2.2+2.4^{+2.4}_{−2.2}(syst) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed

    A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

    Get PDF
    A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp → pp + Z/γ + X, in proton-tagged events from proton–proton collisions at √s = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. odelindependent upper limits on the visible production cross section of pp → pp + Z/γ + X are set

    A portrait of the Higgs boson by the CMS experiment ten years after the discovery

    Get PDF
    In July 2012, the ATLAS and CMS collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 gigaelectronvolts. Ten years later, and with the data corresponding to the production of a 30-times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin–parity quantum numbers, determined its mass and measured its production cross-sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross-section for the production of a pair of Higgs bosons, on the basis of data from proton–proton collisions at a centre-of-mass energy of 13 teraelectronvolts. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next 15 years, will help deepen our understanding of this crucial sector

    Search for long-lived particles decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at s√ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb−1. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred ÎŒm to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons ZD, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with m(ZD) greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for cτ(ZD) (varying with m(ZD)) between 0.03 and ≈0.5 mm, and above ≈0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons

    Search for Higgs Boson Decay to a Charm Quark-Antiquark Pair in Proton-Proton Collisions at √s = 13 TeV

    Get PDF
    A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H→cÂŻc, produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at √s=13  TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138  fb−1. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z→cÂŻc in VZ events, leading to its first observation at a hadron collider with a significance of 5.7 standard deviations. The observed (expected) upper limit on σ(VH)B(H→cÂŻc) is 0.94 (0.50+0.22−0.15)pb at 95% confidence level (C.L.), corresponding to 14 (7.6+3.4−2.3) times the standard model prediction. For the Higgs-charm Yukawa coupling modifier, Îșc, the observed (expected) 95% C.L. interval is 1.1<|Îșc|<5.5 (|Îșc|<3.4), the most stringent constraint to date

    Search for Higgs boson decays into Z and J/ψ and for Higgs and Z boson decays into J/ψ or Y pairs in pp collisions at √s = 13 TeV

    Get PDF
    • 

    corecore