77 research outputs found

    On some provably correct cases of variational inference for topic models

    Full text link
    Variational inference is a very efficient and popular heuristic used in various forms in the context of latent variable models. It's closely related to Expectation Maximization (EM), and is applied when exact EM is computationally infeasible. Despite being immensely popular, current theoretical understanding of the effectiveness of variaitonal inference based algorithms is very limited. In this work we provide the first analysis of instances where variational inference algorithms converge to the global optimum, in the setting of topic models. More specifically, we show that variational inference provably learns the optimal parameters of a topic model under natural assumptions on the topic-word matrix and the topic priors. The properties that the topic word matrix must satisfy in our setting are related to the topic expansion assumption introduced in (Anandkumar et al., 2013), as well as the anchor words assumption in (Arora et al., 2012c). The assumptions on the topic priors are related to the well known Dirichlet prior, introduced to the area of topic modeling by (Blei et al., 2003). It is well known that initialization plays a crucial role in how well variational based algorithms perform in practice. The initializations that we use are fairly natural. One of them is similar to what is currently used in LDA-c, the most popular implementation of variational inference for topic models. The other one is an overlapping clustering algorithm, inspired by a work by (Arora et al., 2014) on dictionary learning, which is very simple and efficient. While our primary goal is to provide insights into when variational inference might work in practice, the multiplicative, rather than the additive nature of the variational inference updates forces us to use fairly non-standard proof arguments, which we believe will be of general interest.Comment: 46 pages, Compared to previous version: clarified notation, a number of typos fixed throughout pape

    Center-based Clustering under Perturbation Stability

    Full text link
    Clustering under most popular objective functions is NP-hard, even to approximate well, and so unlikely to be efficiently solvable in the worst case. Recently, Bilu and Linial \cite{Bilu09} suggested an approach aimed at bypassing this computational barrier by using properties of instances one might hope to hold in practice. In particular, they argue that instances in practice should be stable to small perturbations in the metric space and give an efficient algorithm for clustering instances of the Max-Cut problem that are stable to perturbations of size O(n1/2)O(n^{1/2}). In addition, they conjecture that instances stable to as little as O(1) perturbations should be solvable in polynomial time. In this paper we prove that this conjecture is true for any center-based clustering objective (such as kk-median, kk-means, and kk-center). Specifically, we show we can efficiently find the optimal clustering assuming only stability to factor-3 perturbations of the underlying metric in spaces without Steiner points, and stability to factor 2+32+\sqrt{3} perturbations for general metrics. In particular, we show for such instances that the popular Single-Linkage algorithm combined with dynamic programming will find the optimal clustering. We also present NP-hardness results under a weaker but related condition

    Learning using Local Membership Queries

    Full text link
    We introduce a new model of membership query (MQ) learning, where the learning algorithm is restricted to query points that are \emph{close} to random examples drawn from the underlying distribution. The learning model is intermediate between the PAC model (Valiant, 1984) and the PAC+MQ model (where the queries are allowed to be arbitrary points). Membership query algorithms are not popular among machine learning practitioners. Apart from the obvious difficulty of adaptively querying labelers, it has also been observed that querying \emph{unnatural} points leads to increased noise from human labelers (Lang and Baum, 1992). This motivates our study of learning algorithms that make queries that are close to examples generated from the data distribution. We restrict our attention to functions defined on the nn-dimensional Boolean hypercube and say that a membership query is local if its Hamming distance from some example in the (random) training data is at most O(log(n))O(\log(n)). We show the following results in this model: (i) The class of sparse polynomials (with coefficients in R) over {0,1}n\{0,1\}^n is polynomial time learnable under a large class of \emph{locally smooth} distributions using O(log(n))O(\log(n))-local queries. This class also includes the class of O(log(n))O(\log(n))-depth decision trees. (ii) The class of polynomial-sized decision trees is polynomial time learnable under product distributions using O(log(n))O(\log(n))-local queries. (iii) The class of polynomial size DNF formulas is learnable under the uniform distribution using O(log(n))O(\log(n))-local queries in time nO(log(log(n)))n^{O(\log(\log(n)))}. (iv) In addition we prove a number of results relating the proposed model to the traditional PAC model and the PAC+MQ model

    Almost Optimal Stochastic Weighted Matching With Few Queries

    Full text link
    We consider the {\em stochastic matching} problem. An edge-weighted general (i.e., not necessarily bipartite) graph G(V,E)G(V, E) is given in the input, where each edge in EE is {\em realized} independently with probability pp; the realization is initially unknown, however, we are able to {\em query} the edges to determine whether they are realized. The goal is to query only a small number of edges to find a {\em realized matching} that is sufficiently close to the maximum matching among all realized edges. This problem has received a considerable attention during the past decade due to its numerous real-world applications in kidney-exchange, matchmaking services, online labor markets, and advertisements. Our main result is an {\em adaptive} algorithm that for any arbitrarily small ϵ>0\epsilon > 0, finds a (1ϵ)(1-\epsilon)-approximation in expectation, by querying only O(1)O(1) edges per vertex. We further show that our approach leads to a (1/2ϵ)(1/2-\epsilon)-approximate {\em non-adaptive} algorithm that also queries only O(1)O(1) edges per vertex. Prior to our work, no nontrivial approximation was known for weighted graphs using a constant per-vertex budget. The state-of-the-art adaptive (resp. non-adaptive) algorithm of Maehara and Yamaguchi [SODA 2018] achieves a (1ϵ)(1-\epsilon)-approximation (resp. (1/2ϵ)(1/2-\epsilon)-approximation) by querying up to O(wlogn)O(w\log{n}) edges per vertex where ww denotes the maximum integer edge-weight. Our result is a substantial improvement over this bound and has an appealing message: No matter what the structure of the input graph is, one can get arbitrarily close to the optimum solution by querying only a constant number of edges per vertex. To obtain our results, we introduce novel properties of a generalization of {\em augmenting paths} to weighted matchings that may be of independent interest