17 research outputs found
A Stochastic Resource-Sharing Network for Electric Vehicle Charging
We consider a distribution grid used to charge electric vehicles such that
voltage drops stay bounded. We model this as a class of resource-sharing
networks, known as bandwidth-sharing networks in the communication network
literature. We focus on resource-sharing networks that are driven by a class of
greedy control rules that can be implemented in a decentralized fashion. For a
large number of such control rules, we can characterize the performance of the
system by a fluid approximation. This leads to a set of dynamic equations that
take into account the stochastic behavior of EVs. We show that the invariant
point of these equations is unique and can be computed by solving a specific
ACOPF problem, which admits an exact convex relaxation. We illustrate our
findings with a case study using the SCE 47-bus network and several special
cases that allow for explicit computations.Comment: 13 pages, 8 figure
Heavy-traffic approximations for a layered network with limited resources
Motivated by a web-server model, we present a queueing network consisting of two layers. The first layer incorporates the arrival of customers at a network of two single-server nodes. We assume that the inter-arrival and the service times have general distributions. Customers are served according to their arrival order at each node and after finishing their service they can re-enter at nodes several times (as new customers) for new services. At the second layer, active servers act as jobs which are served by a single server working at speed one in a Processor-Sharing fashion. We further assume that the degree of resource sharing is limited by choice, leading to a Limited Processor-Sharing discipline. Our main result is a diffusion approximation for the process describing the number of customers in the system. Assuming a single bottleneck node and studying the system as it approaches heavy traffic, we prove a state-space collapse property. The key to derive this property is to study the model at the second layer and to prove a diffusion limit theorem, which yields an explicit approximation for the customers in the system
A stochastic resource-sharing network for electric vehicle charging
We consider a distribution grid used to charge electric vehicles subject to voltage stability and various other constraints. We model this as a class of resource
A fluid model of an electric vehicle charging network
We develop and analyze a measure-valued fluid model keeping track of parking and charging requirements of electric vehicles in a local distribution grid. We show how this model arises as an accumulation point of an appropriately scaled sequence of stochastic network models. Our analysis incorporates load-flow models that describe the laws of electricity. Specifically, we consider the alternating current (AC) and the linearized Distflow power flow models and show a continuity property of the associated power allocation functions
Bounds and limit theorems for a layered queueing model in electric vehicle charging
The rise of electric vehicles (EVs) is unstoppable due to factors such as the decreasing cost of batteries and various policy decisions. These vehicles need to be charged and will therefore cause congestion in local distribution grids in the future. Motivated by this, we consider a charging station with finitely many parking spaces, in which electric vehicles arrive in order to get charged. An EV has a random parking time and a random charging time. Both the charging rate per vehicle and the charging rate possible for the station are assumed to be limited. Thus, the charging rate of uncharged EVs depends on the number of cars charging simultaneously. This model leads to a layered queueing network in which parking spaces with EV chargers have a dual role, of a server (to cars) and a customer (to the grid). We are interested in the performance of the aforementioned model, focusing on the fraction of vehicles that get fully charged. To do so, we develop several bounds and asymptotic (fluid and diffusion) approximations for the vector process which describes the total number of EVs and the number of not fully charged EVs in the charging station, and we compare these bounds and approximations with numerical outcomes