2,082 research outputs found
Generalized basic probability assignments
Dempster-Shafer theory allows to construct belief functions from (precise) basic probability assignments. The present paper extends this idea substantially. By considering SETS of basic probability assignments, an appealing constructive approach to general interval probability (general imprecise probabilities) is achieved, which allows for a very flexible modelling of uncertain knowledge
An exact corrected log-likelihood function for Cox's proportional hazards model under measurement error and some extensions
This paper studies Cox`s proportional hazards model under covariate measurement error. Nakamura`s (1990) methodology of corrected log-likelihood will be applied to the so called Breslow likelihood, which is, in the absence of measurement error, equivalent to partial likelihood. For a general error model with possibly heteroscedastic and non-normal additive measurement error, corrected estimators of the regression parameter as well as of the baseline hazard rate are obtained. The estimators proposed by Nakamura (1992), Kong, Huang and Li (1998) and Kong and Gu (1999) are reestablished in the special cases considered there. This sheds new light on these estimators and justifies them as exact corrected score estimators. Finally, the method will be extended to some variants of the Cox model
On Sharp Identification Regions for Regression Under Interval Data
The reliable analysis of interval data (coarsened data) is one of the
most promising applications of imprecise probabilities in statistics. If one
refrains from making untestable, and often materially unjustified, strong
assumptions on the coarsening process, then the empirical distribution
of the data is imprecise, and statistical models are, in Manski’s terms,
partially identified. We first elaborate some subtle differences between
two natural ways of handling interval data in the dependent variable of
regression models, distinguishing between two different types of identification
regions, called Sharp Marrow Region (SMR) and Sharp Collection
Region (SCR) here. Focusing on the case of linear regression analysis, we
then derive some fundamental geometrical properties of SMR and SCR,
allowing a comparison of the regions and providing some guidelines for
their canonical construction.
Relying on the algebraic framework of adjunctions of two mappings between
partially ordered sets, we characterize SMR as a right adjoint and
as the monotone kernel of a criterion function based mapping, while SCR
is indeed interpretable as the corresponding monotone hull. Finally we
sketch some ideas on a compromise between SMR and SCR based on a
set-domained loss function.
This paper is an extended version of a shorter paper with the same title,
that is conditionally accepted for publication in the Proceedings of
the Eighth International Symposium on Imprecise Probability: Theories
and Applications. In the present paper we added proofs and the seventh
chapter with a small Monte-Carlo-Illustration, that would have made the
original paper too long
On weighted local fitting and its relation to the Horvitz-Thompson estimator
Weighting is a largely used concept in many fields of statistics and has frequently caused controversies on its justification and profit. In this paper, we analyze a weighted version of the well-known local polynomial regression estimators, derive their asymptotic bias and variance, and find that the conflict between the asymptotically optimal weighting scheme and the practical requirements has a surprising counterpart in sampling theory, leading us back to the discussion on Basu's (1971) elephants
Bayesian Linear Regression
The paper is concerned with Bayesian analysis under prior-data conflict, i.e. the situation when observed data are rather unexpected under the prior (and the sample size is not large enough to eliminate the influence of the prior). Two approaches for Bayesian linear regression modeling based on conjugate priors are considered in detail, namely the standard approach also described in Fahrmeir, Kneib & Lang (2007) and an alternative adoption of the general construction procedure for exponential family sampling models. We recognize that - in contrast to some standard i.i.d. models like the scaled normal model and the Beta-Binomial / Dirichlet-Multinomial model, where prior-data conflict is completely ignored - the models may show some reaction to prior-data conflict, however in a rather unspecific way. Finally we briefly sketch the extension to a corresponding imprecise probability model, where, by considering sets of prior distributions instead of a single prior, prior-data conflict can be handled in a very appealing and intuitive way
Some Recent Advances in Measurement Error Models and Methods
A measurement error model is a regression model with (substantial) measurement errors in the variables. Disregarding these measurement errors in estimating the regression parameters results in asymptotically biased estimators. Several methods have been proposed to eliminate, or at least to reduce, this bias, and the relative efficiency and robustness of these methods have been compared. The paper gives an account of these endeavors. In another context, when data are of a categorical nature, classification errors play a similar role as measurement errors in continuous data. The paper also reviews some recent advances in this field
Bayesian Learning for a Class of Priors with Prescribed Marginals
We present Bayesian updating of an imprecise probability measure, represented by a class of precise multidimensional probability measures. Choice and analysis of our class are motivated by expert interviews that we conducted with modelers in the context of climatic change. From the interviews we deduce that generically, experts hold a much more informed opinion on the marginals of uncertain parameters rather than on their correlations. Accordingly, we specify the class by prescribing precise measures for the marginals while letting the correlation structure subject to complete ignorance. For sake of transparency, our discussion focuses on the tutorial example of a linear two-dimensional Gaussian model. We operationalize Bayesian learning for that class by various updating rules, starting with (a modified version of) the generalized Bayes' rule and the maximum likelihood update rule (after Gilboa and Schmeidler). Over a large range of potential observations, the generalized Bayes' rule would provide non-informative results. We restrict this counter-intuitive and unnecessary growth of uncertainty by two means, the discussion of which refers to any kind of imprecise model, not only to our class. First, we find our class of priors too inclusive and, hence, require certain additional properties of prior measures in terms of smoothness of probability density functions. Second, we argue that both updating rules are dissatisfying, the generalized Bayes' rule being too conservative, i.e., too inclusive, the maximum likelihood rule being too exclusive. Instead, we introduce two new ways of Bayesian updating of imprecise probabilities: a ``weighted maximum likelihood method'' and a ``semi-classical method.'' The former bases Bayesian updating on the whole set of priors, however, with weighted influence of its members. By referring to the whole set, the weighted maximum likelihood method allows for more robust inferences than the standard maximum likelihood method and, hence, is better to justify than the latter.Furthermore, the semi-classical method is more objective than the weighted maximum likelihood method as it does not require the subjective definition of a weighting function. Both new methods reveal much more informative results than the generalized Bayes' rule, what we demonstrate for the example of a stylized insurance model
Regression calibration for Cox regression under heteroscedastic measurement error - Determining risk factors of cardiovascular diseases from error-prone nutritional replication data
For instance nutritional data are often subject to severe measurement error, and an adequate adjustment of the estimators is indispensable to avoid deceptive conclusions. This paper discusses and extends the method of regression calibration to correct for measurement error in Cox regression. Special attention is paid to the modelling of quadratic predictors, the role of heteroscedastic measurement error, and the efficient use of replicated measurements of the surrogates. The method is used to analyze data from the German part of the MONICA cohort study on cardiovascular diseases. The results corroborate the importance of taking into account measurement error carefully
Partially Identified Prevalence Estimation under Misclassification using the Kappa Coefficient
We discuss a new strategy for prevalence estimation in the presence of misclassification. Our method is applicable when misclassification probabilities are unknown but independent replicate measurements are available. This yields the kappa coefficient, which indicates the agreement between the two measurements. From this information, a direct correction for misclassification is not feasible due to non-identifiability. However, it is possible to derive estimation intervals relying on the concept of partial identification. These intervals give interesting insights into possible bias due to misclassification. Furthermore, confidence intervals can be constructed. Our method is illustrated in several theoretical scenarios and in an example from oral health, where prevalence estimation of caries in children is the issue
Optimal public investment, growth, and consumption : evidence from African countries.
How much does public capital matter for economic growth? How large should it be? This paper attempts to answer these questions, taking the case of SSA countries. It develops and estimates a model that posits a nonlinear relationship between public investment and growth, to determine the growth-maximizing public investment GDP share. It empirically also accounts for the crowding-in and crowding-out effects between public and private investment, with equations estimated separately and simultaneously, using System GMM. The paper further runs simulation and examines the public investment GDP share that maximizes consumption. This is estimated to be between 8.4 percent and 11.0 percent. The results from estimating the growth model are in the middle of this range, which is larger than the observed value of 7.2 percent at the end of the sample period. These outcomes suggest that, on average, there has been public under-investment in Africa, contrary to previous finding
- …