117 research outputs found
The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle
It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast. Three cannulated lactating cows received a daily ration (24 kg/d) of corn silage (61% of DM), concentrates (30% of DM), dehydrated alfalfa (9% of DM) and a minerals and vitamins mix (1% of DM). The effect of yeast (BIOSAF SC 47, Lesaffre Feed Additives, France; 0.5 or 5 g/d) was compared to a control (no additive) in a 3×3 Latin square design. The variation in the rumen bacterial community between treatments was assessed using Serial Analysis of V1 Ribosomal Sequence Tag (SARST-V1) and 454 pyrosequencing based on analysis of the 16S rRNA gene. Compared to the control diet supplementation of probiotic yeast maintained a healthy fermentation in the rumen of lactating cattle (higher VFA concentration [high yeast dose only], higher rumen pH, and lower Eh and lactate). These improvements were accompanied with a shift in the main fibrolytic group (Fibrobacter and Ruminococcus) and lactate utilising bacteria (Megasphaera and Selenomonas). In addition we have shown that the analysis of short V1 region of 16s rRNA gene (50–60 bp) could give as much phylogenetic information as a longer read (454 pyrosequencing of 250 bp). This study also highlights the difficulty of drawing conclusions on composition and diversity of complex microbiota because of the variation caused by the use of different methods (sequencing technology and/or analysis)
The effects of selenium feed supplements on the oxidative stability indicators of egg yolk during the laying period
The aim of this study was to assess the effects of four types of selenium (Se) feed supplements on the indicators of the oxidative stability of egg yolk. A total of 1,740 Bovans Brown laying hens were divided into 4 experimental and 1 control group. The diets fed to the experimental groups were supplemented with 0.2 mg/kg of Se, provided as sodium selenite, Se-enriched yeast, synthetic L-selenomethionine and hydroxy-analogue of selenomethionine. The highest concentrations of MDA, an indicator of secondary lipid oxidation, were confirmed in the Control Group eggs (P < 0.001). Egg yolks from the Control Group were found to have the highest lightness (P = 0.032), the lowest colour chroma and the lowest proportions of the red and yellow colours (P < 0.001). The highest vitelline membrane strength was measured in eggs from groups fed diets supplemented with organic Se (P < 0.001). No significant differences were found between groups in the total fatty acid content, the content of saturated and unsaturated fatty acids or the n-6/n-3 fatty acid ratios. Our study confirmed the effect of Se feed supplements on the concentration of MDA and the colour indicators of egg yolk and on the vitelline membrane strength
Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production
Resistance to antibiotics is escalating and threatening humans and animals worldwide. Different countries have legislated or promoted the ban of antibiotics as growth promoters in livestock and aquaculture to reduce this phenomenon. Therefore, to improve animal growth and reproduction performance and to control multiple bacterial infections, there is a potential to use probiotics as non-antibiotic growth promoters. Lactic acid bacteria (LAB) offer various advantages as potential probiotics and can be considered as alternatives to antibiotics during food-animal production. LAB are safe microorganisms with abilities to produce different inhibitory compounds such as bacteriocins, organic acids as lactic acid, hydrogen peroxide, diacetyl, and carbon dioxide. LAB can inhibit harmful microorganisms with their arsenal, or through competitive exclusion mechanism based on competition for binding sites and nutrients. LAB endowed with specific enzymatic functions (amylase, protease…) can improve nutrients acquisition as well as animal immune system stimulation. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to antibiotics in poultry, pigs, ruminants, and aquaculture production
Recommended from our members
Exome and whole genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity
The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a five-year survival rate of 15%, identification of new therapeutic targets for EAC is greatly important. We analyze the mutation spectra from whole exome sequencing of 149 EAC tumors/normal pairs, 15 of which have also been subjected to whole genome sequencing. We identify a mutational signature defined by a high prevalence of A to C transversions at AA dinucleotides. Statistical analysis of exome data identified significantly mutated 26 genes. Of these genes, four (TP53, CDKN2A, SMAD4, and PIK3CA) have been previously implicated in EAC. The novel significantly mutated genes include chromatin modifying factors and candidate contributors: SPG20, TLR4, ELMO1, and DOCK2. Functional analyses of EAC-derived mutations in ELMO1 reveal increased cellular invasion. Therefore, we suggest a new hypothesis about the potential activation of the RAC1 pathway to be a contributor to EAC tumorigenesis
Recommended from our members
The genetic landscape of high-risk neuroblastoma
Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%1. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 cases using a combination of whole exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per megabase (0.48 non-silent), and remarkably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, an additional 7.1% had focal deletions), MYCN (1.7%, a recurrent p.Pro44Leu alteration), and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1, and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies reliant upon frequently altered oncogenic drivers
Recommended from our members
Mutational heterogeneity in cancer and the search for new cancer genes
Major international projects are now underway aimed at creating a comprehensive catalog of all genes responsible for the initiation and progression of cancer. These studies involve sequencing of matched tumor–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here, we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false positive findings that overshadow true driver events. Here, we show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumor-normal pairs and discover extraordinary variation in (i) mutation frequency and spectrum within cancer types, which shed light on mutational processes and disease etiology, and (ii) mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and allow true cancer genes to rise to attention
Cosmology with the Laser Interferometer Space Antenna
254 pags:, 44 figs.The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universe.This work is partly supported by: A.G. Leventis Foundation; Academy of Finland
Grants 328958 and 345070; Alexander S. Onassis Foundation, Scholarship ID: FZO 059-1/2018-2019;
Amaldi Research Center funded by the MIUR program “Dipartimento di Eccellenza” (CUP:
B81I18001170001); ASI Grants No. 2016-24-H.0 and No. 2016-24-H.1-2018; Atracción de Talento
Grant 2019-T1/TIC-15784; Atracción de Talento contract no. 2019-T1/TIC-13177 granted by the
Comunidad de Madrid; Ayuda ‘Beatriz Galindo Senior’ by the Spanish ‘Ministerio de Universidades’,
Grant BG20/00228; Basque Government Grant (IT-979-16); Belgian Francqui Foundation; Centre national
d’Etudes spatiales; Ben Gurion University Kreitman Fellowship, and the Israel Academy of Sciences and
Humanities (IASH) & Council for Higher Education (CHE) Excellence Fellowship Program for
International Postdoctoral Researchers; Centro de Excelencia Severo Ochoa Program SEV-2016-0597;
CERCA program of the Generalitat de Catalunya; Cluster of Excellence “Precision Physics, Fundamental
Interactions, and Structure of Matter” (PRISMA? EXC 2118/1); Comunidad de Madrid, Contrato de
Atracción de Talento 2017-T1/TIC-5520; Czech Science Foundation GAČR, Grant No. 21-16583M; Delta
ITP consortium; Department of Energy under Grant No. DE-SC0008541, DE-SC0009919 and DESC0019195; Deutsche Forschungsgemeinschaft (DFG), Project ID 438947057; Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy - EXC 2121 Quantum Universe - 390833306; European
Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project
CoGraDS - CZ.02.1.01/0.0/0.0/15 003/0000437); European Union’s H2020 ERC Consolidator Grant
“GRavity from Astrophysical to Microscopic Scales” (Grant No. GRAMS-815673); European Union’s
H2020 ERC, Starting Grant Agreement No. DarkGRA-757480; European Union’s Horizon 2020
programme under the Marie Sklodowska-Curie Grant Agreement 860881 (ITN HIDDeN); European
Union’s Horizon 2020 Research and Innovation Programme Grant No. 796961, “AxiBAU” (K.S.);
European Union’s Horizon 2020 Research Council grant 724659 MassiveCosmo ERC-2016-COG; FCT
through national funds (PTDC/FIS-PAR/31938/2017) and through project “BEYLA – BEYond LAmbda”
with Ref. Number PTDC/FIS-AST/0054/2021; FEDER-Fundo Europeu de Desenvolvimento Regional
through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI-01-0145-
FEDER-031938) and research Grants UIDB/04434/2020 and UIDP/04434/2020; Fondation CFM pour la
Recherche in France; Foundation for Education and European Culture in Greece; French ANR project
MMUniverse (ANR-19-CE31-0020); FRIA Grant No.1.E.070.19F of the Belgian Fund for Research, F.R.
S.-FNRS Fundação para a Ciência e a Tecnologia (FCT) through Contract No. DL 57/2016/CP1364/
CT0001; Fundação para a Ciência e a Tecnologia (FCT) through Grants UIDB/04434/2020, UIDP/04434/
2020, PTDC/FIS-OUT/29048/2017, CERN/FIS-PAR/0037/2019 and “CosmoTests – Cosmological tests of
gravity theories beyond General Relativity” CEECIND/00017/2018; Generalitat Valenciana Grant
PROMETEO/2021/083; Grant No. 758792, project GEODESI; Government of Canada through the
Department of Innovation, Science and Economic Development and Province of Ontario through the
Ministry of Colleges and Universities; Grants-in-Aid for JSPS Overseas Research Fellow (No.
201960698); I?D Grant PID2020-118159GB-C41 of the Spanish Ministry of Science and Innovation;
INFN iniziativa specifica TEONGRAV; Israel Science Foundation (Grant No. 2562/20); Japan Society for
the Promotion of Science (JSPS) KAKENHI Grant Nos. 20H01899 and 20H05853; IFT Centro de
Excelencia Severo Ochoa Grant SEV-2; Kavli Foundation and its founder Fred Kavli; Minerva
Foundation; Ministerio de Ciencia e Innovacion Grant PID2020-113644GB-I00; NASA Grant
80NSSC19K0318; NASA Hubble Fellowship grants No. HST-HF2-51452.001-A awarded by the Space
Telescope Science Institute with NASA contract NAS5-26555; Netherlands Organisation for Science and
Research (NWO) Grant Number 680-91-119; new faculty seed start-up grant of the Indian Institute of
Science, Bangalore, the Core Research Grant CRG/2018/002200 of the Science and Engineering; NSF
Grants PHY-1820675, PHY-2006645 and PHY-2011997; Polish National Science Center Grant 2018/31/D/
ST2/02048; Polish National Agency for Academic Exchange within the Polish Returns Programme under
Agreement PPN/PPO/2020/1/00013/U/00001; Pró-Reitoria de Pesquisa of Universidade Federal de Minas
Gerais (UFMG) under Grant No. 28359; Ramón y Cajal Fellowship contract RYC-2017-23493; Research
Project PGC2018-094773-B-C32 [MINECO-FEDER]; Research Project PGC2018-094773-B-C32
[MINECO-FEDER]; ROMFORSK Grant Project. No. 302640; Royal Society Grant URF/R1/180009
and ERC StG 949572: SHADE; Shota Rustaveli National Science Foundation (SRNSF) of Georgia (Grant
FR/18-1462); Simons Foundation/SFARI 560536; SNSF Ambizione grant; SNSF professorship Grant
(No. 170547); Spanish MINECO’s “Centro de Excelencia Severo Ochoa” Programme Grants SEV-2016-
0597 and PID2019-110058GB-C22; Spanish Ministry MCIU/AEI/FEDER Grant (PGC2018-094626-BC21); Spanish Ministry of Science and Innovation (PID2020-115845GB-I00/AEI/10.13039/
501100011033); Spanish Proyectos de I?D via Grant PGC2018-096646-A-I00; STFC Consolidated
Grant ST/T000732/1; STFC Consolidated Grants ST/P000762/1 and ST/T000791/1; STFC Grant ST/
S000550/1; STFC Grant ST/T000813/1; STFC Grants ST/P000762/1 and ST/T000791/1; STFC under the
research Grant ST/P000258/1; Swiss National Science Foundation (SNSF), project The Non-Gaussian
Universe and Cosmological Symmetries, Project Number: 200020-178787; Swiss National Science
Foundation Professorship Grants No. 170547 and No. 191957; SwissMap National Center for Competence
in Research; “The Dark Universe: A Synergic Multi-messenger Approach” Number 2017X7X85K under
the MIUR program PRIN 2017; UK Space Agency; UKSA Flagship Project, Euclid.Peer reviewe
- …