5 research outputs found

    Introducing Syllable Tokenization for Low-resource Languages: A Case Study with Swahili

    Full text link
    Many attempts have been made in multilingual NLP to ensure that pre-trained language models, such as mBERT or GPT2 get better and become applicable to low-resource languages. To achieve multilingualism for pre-trained language models (PLMs), we need techniques to create word embeddings that capture the linguistic characteristics of any language. Tokenization is one such technique because it allows for the words to be split based on characters or subwords, creating word embeddings that best represent the structure of the language. Creating such word embeddings is essential to applying PLMs to other languages where the model was not trained, enabling multilingual NLP. However, most PLMs use generic tokenization methods like BPE, wordpiece, or unigram which may not suit specific languages. We hypothesize that tokenization based on syllables within the input text, which we call syllable tokenization, should facilitate the development of syllable-aware language models. The syllable-aware language models make it possible to apply PLMs to languages that are rich in syllables, for instance, Swahili. Previous works introduced subword tokenization. Our work extends such efforts. Notably, we propose a syllable tokenizer and adopt an experiment-centric approach to validate the proposed tokenizer based on the Swahili language. We conducted text-generation experiments with GPT2 to evaluate the effectiveness of the syllable tokenizer. Our results show that the proposed syllable tokenizer generates syllable embeddings that effectively represent the Swahili language

    Image Classification for CSSVD Detection in Cacao Plants

    Full text link
    The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, we propose the development of image classifiers to detect CSSVD-infected cacao plants. Our proposed solution is based on VGG16, ResNet50 and Vision Transformer (ViT). We evaluate the classifiers on a recently released and publicly accessible KaraAgroAI Cocoa dataset. Our best image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. Our results indicate that the image classifiers learn to identify cacao plants infected with CSSVD

    Domain Adaptation in Intent Classification Systems: A Review

    Full text link
    Dialogue agents, which perform specific tasks, are part of the long-term goal of NLP researchers to build intelligent agents that communicate with humans in natural language. Such systems should adapt easily from one domain to another to assist users in completing tasks. Researchers have developed a broad range of techniques, objectives, and datasets for intent classification to achieve such systems. Despite the progress in developing intent classification systems (ICS), a systematic review of the progress from a technical perspective is yet to be conducted. In effect, important implementation details of intent classification remain restricted and unclear, making it hard for natural language processing (NLP) researchers to develop new methods. To fill this gap, we review contemporary works in intent classification. Specifically, we conduct a thorough technical review of the datasets, domains, tasks, and methods needed to train the intent classification part of dialogue systems. Our structured analysis describes why intent classification is difficult and studies the limitations to domain adaptation while presenting opportunities for future work

    Dealing with Imbalanced Classes in Bot-IoT Dataset

    Full text link
    With the rapidly spreading usage of Internet of Things (IoT) devices, a network intrusion detection system (NIDS) plays an important role in detecting and protecting various types of attacks in the IoT network. To evaluate the robustness of the NIDS in the IoT network, the existing work proposed a realistic botnet dataset in the IoT network (Bot-IoT dataset) and applied it to machine learning-based anomaly detection. This dataset contains imbalanced normal and attack packets because the number of normal packets is much smaller than that of attack ones. The nature of imbalanced data may make it difficult to identify the minority class correctly. In this thesis, to address the class imbalance problem in the Bot-IoT dataset, we propose a binary classification method with synthetic minority over-sampling techniques (SMOTE). The proposed classifier aims to detect attack packets and overcome the class imbalance problem using the SMOTE algorithm. Through numerical results, we demonstrate the proposed classifier's fundamental characteristics and the impact of imbalanced data on its performance

    Constructing Multilingual Visual-Text Datasets Revealing Visual Multilingual Ability of Vision Language Models

    Full text link
    Large language models (LLMs) have increased interest in vision language models (VLMs), which process image-text pairs as input. Studies investigating the visual understanding ability of VLMs have been proposed, but such studies are still preliminary because existing datasets do not permit a comprehensive evaluation of the fine-grained visual linguistic abilities of VLMs across multiple languages. To further explore the strengths of VLMs, such as GPT-4V \cite{openai2023GPT4}, we developed new datasets for the systematic and qualitative analysis of VLMs. Our contribution is four-fold: 1) we introduced nine vision-and-language (VL) tasks (including object recognition, image-text matching, and more) and constructed multilingual visual-text datasets in four languages: English, Japanese, Swahili, and Urdu through utilizing templates containing \textit{questions} and prompting GPT4-V to generate the \textit{answers} and the \textit{rationales}, 2) introduced a new VL task named \textit{unrelatedness}, 3) introduced rationales to enable human understanding of the VLM reasoning process, and 4) employed human evaluation to measure the suitability of proposed datasets for VL tasks. We show that VLMs can be fine-tuned on our datasets. Our work is the first to conduct such analyses in Swahili and Urdu. Also, it introduces \textit{rationales} in VL analysis, which played a vital role in the evaluation
    corecore