79 research outputs found

    Source Size Limitation from Variabilities of a Lensed Quasar

    Get PDF
    In the case of gravitationally-lensed quasars, it is well-known that there is a time delay between occurrence of the intrinsic variabilities in each split image. Generally, the source of variabilities has a finite size, and there are time delays even in one image. If the origin of variabilities is widely distributed, say over \gsim 100 pc as whole, variabilities between split images will not show a good correlation even though their origin is identical. Using this fact, we are able to limit the whole source size of variabilities in a quasar below the limit of direct resolution by today's observational instruments.Comment: 15 pages LaTeX, 3 figures, accepted to ApJ Letter. e-mail: [email protected]

    Large-Scale Structure of Short-Lived Lyman\alpha Emitters

    Full text link
    Recently discovered large-scale structure of Ly\alpha Emitters (LAEs) raises a novel challenge to the cold dark matter (CDM) cosmology. The structure is extended over more than 50 Mpc at redshift z=3.1, and exhibits a considerably weak angular correlation. Such properties of LAE distributions appear to be incompatible with the standard biased galaxy formation scenario in the CDM cosmology. In this paper, by considering the possibility that LAEs are short-lived events, we attempt to build up the picture of LAEs concordant with the CDM cosmology. We find that if the lifetime of LAEs is as short as (6.7 \pm 0.6) \times 10^7 yr, the distributions of simulated galaxies successfully match the extension and morphology of large-scale structure of LAEs at z=3.1, and also the weak angular correlation function. This result implies that LAEs at z=3.1 do not necessarily reside in high density peaks, but tends to be located in less dense regions, in a different way from the expectation by the standard biased galaxy formation scenario. In addition, we make a prediction for the angular correlation function of LAEs at redshifts higher than 3. It is found that the prediction deviates from that by the standard biased galaxy formation scenario even at redshifts 4 < z < 6.Comment: 5 pages, 4 figures, accepted for publication in MNRA

    Constraining the size of the narrow line region in distant quasars

    Full text link
    We propose a proper method to measure the size of the narrow line region (NLR) in distant quasars. The apparent angular size of the NLR is, in general, too small to resolve technically. However, it is possible to map the NLR if with gravitational lensing. In our method, we directly compare the observed image of the NLR with the expected lensed images of the NLR for various source sizes and lens models. Seeking the best fit image via the comparison procedures, we can obtain the best-fit size and the best-fit lens model. We apply this method to the two-dimensional spectroscopic data of a famous lensed quasar, Q2237+0305. If the lens galaxy resembles the applied lens model, an upper limit to the NLR size can be set 750 pc. Further, we examine how the fitting results will be improved by future observations, taking into account the realistic observational effects, such as seeing. Future observations will provide us more stringent constraints on the size of the NLR and on the density profile of the lens galaxy.Comment: 17 pages including 4 figures, accepted to Ap

    Evidence for a source size of less than 2000 AU in Quasar 2237+0305

    Get PDF
    Recently, OGLE team have reported clear quasar microlensing signal in Q2237+0305. We have analyzed the microlens event of ``image C'' by using their finely and densely sampled lightcurves. From lightcurve fitting, we can unambiguously set the source size of \lsim 0.98 Einstein Ring radius as a conservative limit. This limit corresponds to 2000(AU)2000 {\rm (AU)}, if we adopt Mlens0.1MM_{\rm lens} \sim 0.1M_{\odot} obtained by a recent statistical study of mean mass of lens object. This gives a clear evidence for the existence of an accretion disk in the central region of the quasar.Comment: 11 pages, including 1 table and 3 figures, accepted to ApJ

    An X-Ray Microlensing Test of AU-Scale Accretion Disk Structure in Q2237+0305

    Get PDF
    The innermost regions of quasars can be resolved by a gravitational-lens {\lq}telescope{\rq} on scales down to a few AU. For the purpose, X-ray observations are most preferable, because X-rays originating from the innermost regions, can be selectively amplified by microlensing due to the so-called `caustic crossing'. If detected, X-ray variations will constrain the size of the X-ray emitting region down to a few AU. The maximum attainable resolution depends mainly on the monitoring intervals of lens events, which should be much shorter than the crossing time. On the basis of this idea, we performe numerical simulations of microlensing of an optically-thick, standard-type disk as well as an optically-thin, advection-dominated accretion flow (ADAF). Calculated spectral variations and light curves show distinct behaviors, depending on the photon energy. X-ray radiation which is produced in optically thin region, exhibits intensity variation over a few tens of days. In contrast, optical-UV fluxes, which are likely to come from optically thick region, exhibit more gradual light changes, which is consistent with the microlensing events so far observed in Q2237+0305. Currently, Q2237+0305 is being monitored in the optical range at Apache Point Observatory. Simultaneous multi-wavelength observations by X-ray sattelites (e.g., ASCA, AXAF, XMM) as well as HST at the moment of a microlens event enable us to reveal an AU scale structure of the central accretion disk around black hole.Comment: 10 pages LaTeX, 3 figures, accepted to ApJ Letter. e-mail: [email protected]

    The effect of FIR emission from SDSS galaxies on the SFD Galactic extinction map

    Get PDF
    We compare the most successful and widely used map of Galactic dust extinction, provided by Schlegel, Finkbeiner & Davis (1998; hereafter SFD), to the galaxy number counts in the Sloan Digital Sky Survey (SDSS) photometric/spectroscopic DR4 sample. We divide the SDSS survey area into 69 disjoint subregions according to the dust extinction provided by SFD and compare the surface number density of galaxies in each subregion. As expected, the galaxy surface number density decreases with increasing extinction but only for SFD extinction values above about 0.1 to 0.2 magnitudes (depending on the band). At lower values of the SFD extinction, we find that the sky surface density of galaxies increases with increasing extinction, precisely the opposite of the effect expected from Galactic dust. We suggest that the far infrared (FIR) brightness of the sky in regions of true low dust extinction is significantly ``contaminated'' by the FIR emission from background galaxies. We show that such an explanation is both qualitatively and quantitatively consistent with the available data. Based on this interpretation we conclude that systematic errors in the SFD extinction map due to extragalactic FIR emission are quite small, of order hundredths of a magnitude, but nevertheless statistically detectable. (Abridged)Comment: 23 pages, 14 figures, submitted to PAS

    A New Method to Map Flares in Quasars

    Full text link
    Recently, Chartas et al. (2001) detected a rapid X-ray flare in the gravitationally lensed, multiple image quasar RX J0911.4+0551. Dramatic events, such as rapid X-ray flares, are useful in providing high precision measurements of the time delays between multiple images. In this paper, we argue that there is a new possibility in measurements of time delays between multiple images of gravitationally lensed quasars; constrain the locations of putative flares that give rise to the intrinsic rapid variabilities of quasars. The realization, however, of these goals cannot be presently achieved due to the limited accuracy of the current measurements. We predict that timing flares with accuracies of the order of a few seconds will be needed to probe the location of the flares. Our proposing method will work with better instruments in near future, such as XEUS.Comment: 22 pages (including 3 tables and 7 figures) Accepted to Ap
    corecore