65 research outputs found
Numerical stress response functions of static granular layers
We investigate the stress response function of a layer of grains, i.e. the
stress profile in response to a localized overload. The shape of the profile is
very sensitive to the packing arrangement, and is thus a good signature of the
preparation procedure of the layer. This study has been done by the use of
molecular dynamics numerical simulations. Here, for a given rain-like
preparation, we present the scaling properties of the response function, and in
particular the influence of the thickness of the layer, and the importance of
the location of the overload and measurement points (at the boundaries, in the
bulk).Comment: 6 pages, 4 figures, to appear in the proceedings of the "Traffic and
Granular Flow 2003" conferenc
Analysis of the velocity field of granular hopper flow
We report the analysis of radial characteristics of the flow of granular
material through a conical hopper. The discharge is simulated for various
orifice sizes and hopper opening angles. Velocity profiles are measured along
two radial lines from the hopper cone vertex: along the main axis of the cone
and along its wall. An approximate power law dependence on the distance from
the orifice is observed for both profiles, although differences between them
can be noted. In order to quantify these differences, we propose a Local Mass
Flow index that is a promising tool in the direction of a more reliable
classification of the flow regimes in hoppers
From the stress response function (back) to the sandpile `dip'
We relate the pressure `dip' observed at the bottom of a sandpile prepared by
successive avalanches to the stress profile obtained on sheared granular layers
in response to a localized vertical overload. We show that, within a simple
anisotropic elastic analysis, the skewness and the tilt of the response profile
caused by shearing provide a qualitative agreement with the sandpile dip
effect. We conclude that the texture anisotropy produced by the avalanches is
in essence similar to that induced by a simple shearing -- albeit tilted by the
angle of repose of the pile. This work also shows that this response function
technique could be very well adapted to probe the texture of static granular
packing.Comment: 8 pages, 8 figures, accepted version to appear in Eur. Phys. J.
Phase diagram of a probabilistic cellular automaton with three-site interactions
We study a (1+1) dimensional probabilistic cellular automaton that is closely
related to the Domany-Kinzel (DKCA), but in which the update of a given site
depends on the state of {\it three} sites at the previous time step. Thus,
compared with the DKCA, there is an additional parameter, , representing
the probability for a site to be active at time , given that its nearest
neighbors and itself were active at time . We study phase transitions and
critical behavior for the activity {\it and} for damage spreading, using one-
and two-site mean-field approximations, and simulations, for and
. We find evidence for a line of tricritical points in the () parameter space, obtained using a mean-field approximation at pair level.
To construct the phase diagram in simulations we employ the growth-exponent
method in an interface representation. For , the phase diagram is
similar to the DKCA, but the damage spreading transition exhibits a reentrant
phase. For , the growth-exponent method reproduces the two absorbing
states, first and second-order phase transitions, bicritical point, and damage
spreading transition recently identified by Bagnoli {\it et al.} [Phys. Rev.
E{\bf 63}, 046116 (2001)].Comment: 15 pages, 7 figures, submited to PR
- …