96 research outputs found
Arabic Spelling Correction using Supervised Learning
In this work, we address the problem of spelling correction in the Arabic
language utilizing the new corpus provided by QALB (Qatar Arabic Language Bank)
project which is an annotated corpus of sentences with errors and their
corrections. The corpus contains edit, add before, split, merge, add after,
move and other error types. We are concerned with the first four error types as
they contribute more than 90% of the spelling errors in the corpus. The
proposed system has many models to address each error type on its own and then
integrating all the models to provide an efficient and robust system that
achieves an overall recall of 0.59, precision of 0.58 and F1 score of 0.58
including all the error types on the development set. Our system participated
in the QALB 2014 shared task "Automatic Arabic Error Correction" and achieved
an F1 score of 0.6, earning the sixth place out of nine participants.Comment: System description paper that is submitted in the EMNLP 2014
conference shared task "Automatic Arabic Error Correction" (Mohit et al.,
2014) in the Arabic NLP workshop. 6 page
The Early Restart Algorithm
Consider an algorithm whose time to convergence is unknown (because of some random element in the algorithm, such as a random initial weight choice for neural network training). Consider the following strategy. Run the algorithm for a specific time T. If it has not converged by time T, cut the run short and rerun it from the start (repeat the same strategy for every run). This so-called restart mechanism has been proposed by Fahlman (1988) in the context of backpropagation training. It is advantageous in problems that are prone to local minima or when there is a large variability in convergence time from run to run, and may lead to a speed-up in such cases. In this article, we analyze theoretically the restart mechanism, and obtain conditions on the probability density of the convergence time for which restart will improve the expected convergence time. We also derive the optimal restart time. We apply the derived formulas to several cases, including steepest-descent algorithms
An analog feedback associative memory
A method for the storage of analog vectors, i.e., vectors whose components are real-valued, is developed for the Hopfield continuous-time network. An important requirement is that each memory vector has to be an asymptotically stable (i.e. attractive) equilibrium of the network. Some of the limitations imposed by the continuous Hopfield model on the set of vectors that can be stored are pointed out. These limitations can be relieved by choosing a network containing visible as well as hidden units. An architecture consisting of several hidden layers and a visible layer, connected in a circular fashion, is considered. It is proved that the two-layer case is guaranteed to store any number of given analog vectors provided their number does not exceed 1 + the number of neurons in the hidden layer. A learning algorithm that correctly adjusts the locations of the equilibria and guarantees their asymptotic stability is developed. Simulation results confirm the effectiveness of the approach
Bankruptcy prediction for credit risk using neural networks: A survey and new results
The prediction of corporate bankruptcies is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. This work presents two contributions. First we review the topic of bankruptcy prediction, with emphasis on neural-network (NN) models. Second, we develop an NN bankruptcy prediction model. Inspired by one of the traditional credit risk models developed by Merton (1974), we propose novel indicators for the NN system. We show that the use of these indicators in addition to traditional financial ratio indicators provides a significant improvement in the (out-of-sample) prediction accuracy (from 81.46% to 85.5% for a three-year-ahead forecast)
Learning on a General Network
This paper generalizes the back-propagation method to a general network containing feedback
connections. The network model considered consists of interconnected groups of neurons,
where each group could be fully interconnected (it could have feedback connections, with possibly
asymmetric weights), but no loops between the groups are allowed. A stochastic descent
algorithm is applied, under a certain inequality constraint on each intra-group weight matrix
which ensures for the network to possess a unique equilibrium state for every input
Some Results Regarding the Estimation of Densities and Random Variate Generation Using Neural Networks
In this paper we consider two important topics: density estimation and random variate generation. We will present a framework that is easily implemented using the familiar multilayer neural network. First, we develop two new methods for density estimation, a stochastic method and a related deterministic method. Both methods are based on approximating the distribution function, the density being obtained by differentiation. In the second part of the paper, we develop new random number generation methods. Our methods do not suffer from some of the restrictions of existing methods in that they can be used to generate numbers from an observed inverse relationship between the density estimation process and the random number generation process. We present two variants of this method -- a stochastic and a deterministic version. We propose a second method that is based on formulating the task as a control problem, where a "controller network" is trained to shape a given density into the desired density. We justify the use of all the methods that we propose by providing theoretical convergence results. In particular, we prove that the L8 convergence to the true density to both the density estimation and random variate generation techniques occurs as a rate O((log log N/N)^((1-e)/2) where N is the number of data points and e can be made arbitrarily small for sufficiently smooth target densities. This bound is very close to the optimally achievable convergence rate under similar smoothness conditions. Also, for comparison, the L2 (RMS) convergence rate of a positive kernel density estimator is O(N^(-2/5)) when the optimal kernel width is used. We present numerical simulations to illustrate the performance of the proposed density estimation and random variate generation methods. In addition, we present an extended introduction and bibliography that serves as an overview and reference for the practitioner
The maximum drawdown of the Brownian motion
The MDD is defined as the maximum loss incurred from peak to bottom during a specified period of time. It is often preferred over some of the other risk measures because of the tight relationship between large drawdowns and fund redemptions. Also, a large drawdown can even indicate the start of a deterioration of an otherwise successful trading system, for example due to a market regime switch. Overall, the MDD is a very important risk measure. To be able to use it more insightfully, its analytical properties have to be understood. As a step towards this direction, we have presented in this article some analytic results that we have developed. We hope more and more results will come out from the research community analyzing this important measure
A New Monte Carlo Based Algorithm for the Gaussian Process Classification Problem
Gaussian process is a very promising novel technology that has been applied
to both the regression problem and the classification problem. While for the
regression problem it yields simple exact solutions, this is not the case for
the classification problem, because we encounter intractable integrals. In this
paper we develop a new derivation that transforms the problem into that of
evaluating the ratio of multivariate Gaussian orthant integrals. Moreover, we
develop a new Monte Carlo procedure that evaluates these integrals. It is based
on some aspects of bootstrap sampling and acceptancerejection. The proposed
approach has beneficial properties compared to the existing Markov Chain Monte
Carlo approach, such as simplicity, reliability, and speed
- âŠ