55 research outputs found

    Bell-type inequalities for cold heteronuclear molecules

    Get PDF
    We introduce Bell-type inequalities allowing for non-locality and entanglement tests with two cold heteronuclear molecules. The proposed inequalities are based on correlations between each molecule spatial orientation, an observable which can be experimentally measured with present day technology. Orientation measurements are performed on each subsystem at diferent times. These times play the role of the polarizer angles in Bell tests realized with photons. We discuss the experimental implementations of the proposed tests, which could also be adapted to other high dimensional quantum angular momenta systems.Comment: 4 page

    Dipole-Induced Electromagnetic Transparency

    Full text link
    We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a Dipole-Induced Electromagnetic Transparency (DIET) regime, similar to Electromagnetically Induced Transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows to achieve narrow transmission windows in otherwise completely opaque media. We analyze in details this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed

    Theory of Dipole Induced Electromagnetic Transparency

    Full text link
    A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also proposed

    Controlling vibrational cooling with Zero-Width Resonances: An adiabatic Floquet approach

    Full text link
    In molecular photodissociation, some specific combinations of laser parameters (wavelength and intensity) lead to unexpected Zero-Width Resonances (ZWR), with in principle infinite lifetimes. Their interest in inducing basic quenching mechanisms have recently been devised in the laser control of vibrational cooling through filtration strategies [O. Atabek et al., Phys. Rev. A87, 031403(R) (2013)]. A full quantum adiabatic control theory based on the adiabatic Floquet Hamiltonian is developed to show how a laser pulse could be envelop-shaped and frequency-chirped so as to protect a given initial vibrational state against dissociation, taking advantage from its continuous transport on the corresponding ZWR, all along the pulse duration. As compared with previous control scenarios actually suffering from non-adiabatic contamination, drastically different and much more efficient filtration goals are achieved. A semiclassical analysis helps in finding and interpreting a complete map of ZWRs in the laser parameter plane. In addition, the choice of a given ZWR path, among the complete series identified by the semiclassical approach, amounts to be crucial for the cooling scheme, targeting a single vibrational state population left at the end of the pulse, while all others have almost completely decayed. The illustrative example, offering the potentiality to be transposed to other diatomics, is Na2 prepared by photoassociation in vibrationally hot but translationally and rotationally cold states.Comment: 15 pages, 14 figure

    Optimally Controlled Field-Free Orientation of the Kicked Molecule

    Full text link
    Efficient and long-lived field-free molecular orientation is achieved using only two kicks appropriately delayed in time. The understanding of the mechanism rests upon a molecular target state providing the best efficiency versus persistence compromise. An optimal control scheme is referred to for fixing the free parameters (amplitudes and the time delay between them). The limited number of kicks, the robustness and the transposability to different molecular systems advocate in favor of the process, when considering its experimental feasibility.Comment: 5 pages, 2 figures (version 2 contains some minor additions and corrects many misprints

    Control of molecular dynamics with zero-area fields: Application to molecular orientation and photofragmentation

    Full text link
    The constraint of time-integrated zero-area on the laser field is a fundamental, both theoretical and experimental requirement in the control of molecular dynamics. By using techniques of local and optimal control theory, we show how to enforce this constraint on two benchmark control problems, namely molecular orientation and photofragmentation. The origin and the physical implications on the dynamics of this zero-area control field are discussed.Comment: 19 pages, 7 figure
    • …
    corecore