12 research outputs found

    Interactive robot assistance for upper-limb training

    No full text
    This chapter presents a systematic interaction control framework for robot-assisted training in neurologically impaired individuals. The human-robot relationship is considered as the interaction of two agents with respective control described by a cost function, which enables us to express and implement various interaction strategies. Implementation of this method for training arm reaching in chronic stroke survivors exhibits smooth motion guidance, neither disrupting movement nor preventing the inter-trials variability critical to learning. The human-robot interaction is further analyzed by using differential game theory with an algorithm to identify the human user’s behavior, providing stable, reactive and adaptive movement assistance demonstrated in simulation

    Computer-Aided Reconstruction and Application of <i>Bacillus halodurans</i> S7 Xylanase with Heat and Alkali Resistance

    No full text
    β-1,4-Endoxylanase is the most critical hydrolase for xylan degradation during lignocellulosic biomass utilization. However, its poor stability and activity in hot and alkaline environments hinder its widespread application. In this study, BhS7Xyl from Bacillus halodurans S7 was improved using a computer-aided design through isothermal compressibility (βT) perturbation engineering and by combining three thermostability prediction algorithms (ICPE-TPA). The best variant with remarkable improvement in specific activity, heat resistance (70 °C), and alkaline resistance (both pH 9.0 and 70 °C), R69F/E137M/E145L, exhibited a 4.9-fold increase by wild-type in specific activity (1368.6 U/mg), a 39.4-fold increase in temperature half-life (458.1 min), and a 57.6-fold increase in pH half-life (383.1 min). Furthermore, R69F/E137M/E145L was applied to the hydrolysis of agricultural waste (corncob and hardwood pulp) to efficiently obtain a higher yield of high-value xylooligosaccharides. Overall, the ICPE-TPA strategy has the potential to improve the functional performance of enzymes under extreme conditions for the high-value utilization of lignocellulosic biomass

    Image1_Bacterial diversity of stingless bee honey in Yunnan, China: isolation and genome sequencing of a novel acid-resistant Lactobacillus pentosus (SYBC-MI) with probiotic and L. tryptophan producing potential via millet fermentation.TIF

    No full text
    Stingless bee (Hymenoptera, Apidae, and Trigona) honey is a remarkable “miracle liquid” with a wide range of medical benefits for conditions including gastroenteritis, cataracts, and wound healing. Our study aimed to isolate, identify, and characterize acid-resistant Lactobacillus spp. from sour honey distributed in Yunnan, China. To assess the safety of an entirely novel Lactobacillus pentosus strain, S4 (OM618128), based on probiotic property evaluation and whole-genome sequencing analysis. A 16S rRNA gene high-throughput sequencing analysis showed that Lactobacillus was abundant at the genus level in sour honey. Seven Lactobacillus strains (viz. S1–7) were isolated from sour honey using a multiple-anaerobic culture enrichment method. One potential acid-resistant isolate, Lactobacillus sp. S4, was obtained after screening the seven Lactobacillus isolates, and it had the highest lactic acid production (17.62 g/L), followed by Lactobacillus sp. S3 (17.07 g/L). Phylogenetic and comparative analyses of conserved sequence regions have shown that all seven strains are phylogenetically located in the Lactobacillus pentosus sub-cluster. In L. pentosus SYBC-MI, there is a circular chromosome (3288615 bps) and 11,466 bps plasmids. GC content is 44.03%. The number of predicted genes is 3,129, with 16 rRNAs and 74 tRNAs present. During the fermentation of foxtail millet by seven Lactobacillus pentosus (S1–7) strains isolated from sour honey, a potential tryptophan accumulating isolate, Lactobacillus pentosus S4, was obtained, which could reach a maximum tryptophan content of 238.43 mgL-1 that is 1.80 times the initial tryptophan content in the fermentation broth. This strain has strong acid tolerance, salt tolerance, and fermentation acid production abilities. This strain degrades nitrite at a rate of over 99%, and it has high probiotic potential as well. This project has established a solid foundation for further exploring the excellent lactic acid bacteria in sour honey. It is also investigating the key taxa and their role in the environment. According to the results of our studies, these LAB isolates provide a lot of potential for use in the future, as a source of probiotics for human, animals, and starter cultures for food applications.</p

    Image2_Bacterial diversity of stingless bee honey in Yunnan, China: isolation and genome sequencing of a novel acid-resistant Lactobacillus pentosus (SYBC-MI) with probiotic and L. tryptophan producing potential via millet fermentation.TIF

    No full text
    Stingless bee (Hymenoptera, Apidae, and Trigona) honey is a remarkable “miracle liquid” with a wide range of medical benefits for conditions including gastroenteritis, cataracts, and wound healing. Our study aimed to isolate, identify, and characterize acid-resistant Lactobacillus spp. from sour honey distributed in Yunnan, China. To assess the safety of an entirely novel Lactobacillus pentosus strain, S4 (OM618128), based on probiotic property evaluation and whole-genome sequencing analysis. A 16S rRNA gene high-throughput sequencing analysis showed that Lactobacillus was abundant at the genus level in sour honey. Seven Lactobacillus strains (viz. S1–7) were isolated from sour honey using a multiple-anaerobic culture enrichment method. One potential acid-resistant isolate, Lactobacillus sp. S4, was obtained after screening the seven Lactobacillus isolates, and it had the highest lactic acid production (17.62 g/L), followed by Lactobacillus sp. S3 (17.07 g/L). Phylogenetic and comparative analyses of conserved sequence regions have shown that all seven strains are phylogenetically located in the Lactobacillus pentosus sub-cluster. In L. pentosus SYBC-MI, there is a circular chromosome (3288615 bps) and 11,466 bps plasmids. GC content is 44.03%. The number of predicted genes is 3,129, with 16 rRNAs and 74 tRNAs present. During the fermentation of foxtail millet by seven Lactobacillus pentosus (S1–7) strains isolated from sour honey, a potential tryptophan accumulating isolate, Lactobacillus pentosus S4, was obtained, which could reach a maximum tryptophan content of 238.43 mgL-1 that is 1.80 times the initial tryptophan content in the fermentation broth. This strain has strong acid tolerance, salt tolerance, and fermentation acid production abilities. This strain degrades nitrite at a rate of over 99%, and it has high probiotic potential as well. This project has established a solid foundation for further exploring the excellent lactic acid bacteria in sour honey. It is also investigating the key taxa and their role in the environment. According to the results of our studies, these LAB isolates provide a lot of potential for use in the future, as a source of probiotics for human, animals, and starter cultures for food applications.</p

    Directed Evolution of the UDP-Glycosyltransferase UGT<sub>BL</sub>1 for Highly Regioselective and Efficient Biosynthesis of Natural Phenolic Glycosides

    No full text
    The O-glycosylation of polyphenols for the synthesis of glycosides has garnered substantial attention in food research applications. However, the practical utility of UDP-glycosyltransferases (UGTs) is significantly hindered by their low catalytic efficiency and suboptimal regioselectivity. The concurrent optimization of the regioselectivity and activity during the glycosylation of polyphenols presents a formidable challenge. Here, we addressed the long-standing activity–regioselectivity tradeoff in glycosyltransferase UGTBL1 through systematic enzyme engineering. The optimal combination of mutants, N61S/I62M/D63W/A208R/P218W/R282W (SMWRW1W2), yielded a 6.1-fold improvement in relative activity and a 17.3-fold increase in the ratio of gastrodin to para-hydroxybenzyl alcohol-4′-O-β-glucoside (with 89.5% regioselectivity for gastrodin) compared to those of the wild-type enzyme and ultimately allowed gram-scale production of gastrodin (1,066.2 mg/L) using whole-cell biocatalysis. In addition, variant SMWRW1W2 exhibited a preference for producing phenolic glycosides from several substrates. This study lays the foundation for the engineering of additional UGTs and the practical applications of UGTs in regioselective retrofitting

    Image4_Bacterial diversity of stingless bee honey in Yunnan, China: isolation and genome sequencing of a novel acid-resistant Lactobacillus pentosus (SYBC-MI) with probiotic and L. tryptophan producing potential via millet fermentation.TIF

    No full text
    Stingless bee (Hymenoptera, Apidae, and Trigona) honey is a remarkable “miracle liquid” with a wide range of medical benefits for conditions including gastroenteritis, cataracts, and wound healing. Our study aimed to isolate, identify, and characterize acid-resistant Lactobacillus spp. from sour honey distributed in Yunnan, China. To assess the safety of an entirely novel Lactobacillus pentosus strain, S4 (OM618128), based on probiotic property evaluation and whole-genome sequencing analysis. A 16S rRNA gene high-throughput sequencing analysis showed that Lactobacillus was abundant at the genus level in sour honey. Seven Lactobacillus strains (viz. S1–7) were isolated from sour honey using a multiple-anaerobic culture enrichment method. One potential acid-resistant isolate, Lactobacillus sp. S4, was obtained after screening the seven Lactobacillus isolates, and it had the highest lactic acid production (17.62 g/L), followed by Lactobacillus sp. S3 (17.07 g/L). Phylogenetic and comparative analyses of conserved sequence regions have shown that all seven strains are phylogenetically located in the Lactobacillus pentosus sub-cluster. In L. pentosus SYBC-MI, there is a circular chromosome (3288615 bps) and 11,466 bps plasmids. GC content is 44.03%. The number of predicted genes is 3,129, with 16 rRNAs and 74 tRNAs present. During the fermentation of foxtail millet by seven Lactobacillus pentosus (S1–7) strains isolated from sour honey, a potential tryptophan accumulating isolate, Lactobacillus pentosus S4, was obtained, which could reach a maximum tryptophan content of 238.43 mgL-1 that is 1.80 times the initial tryptophan content in the fermentation broth. This strain has strong acid tolerance, salt tolerance, and fermentation acid production abilities. This strain degrades nitrite at a rate of over 99%, and it has high probiotic potential as well. This project has established a solid foundation for further exploring the excellent lactic acid bacteria in sour honey. It is also investigating the key taxa and their role in the environment. According to the results of our studies, these LAB isolates provide a lot of potential for use in the future, as a source of probiotics for human, animals, and starter cultures for food applications.</p

    Table1_Bacterial diversity of stingless bee honey in Yunnan, China: isolation and genome sequencing of a novel acid-resistant Lactobacillus pentosus (SYBC-MI) with probiotic and L. tryptophan producing potential via millet fermentation.docx

    No full text
    Stingless bee (Hymenoptera, Apidae, and Trigona) honey is a remarkable “miracle liquid” with a wide range of medical benefits for conditions including gastroenteritis, cataracts, and wound healing. Our study aimed to isolate, identify, and characterize acid-resistant Lactobacillus spp. from sour honey distributed in Yunnan, China. To assess the safety of an entirely novel Lactobacillus pentosus strain, S4 (OM618128), based on probiotic property evaluation and whole-genome sequencing analysis. A 16S rRNA gene high-throughput sequencing analysis showed that Lactobacillus was abundant at the genus level in sour honey. Seven Lactobacillus strains (viz. S1–7) were isolated from sour honey using a multiple-anaerobic culture enrichment method. One potential acid-resistant isolate, Lactobacillus sp. S4, was obtained after screening the seven Lactobacillus isolates, and it had the highest lactic acid production (17.62 g/L), followed by Lactobacillus sp. S3 (17.07 g/L). Phylogenetic and comparative analyses of conserved sequence regions have shown that all seven strains are phylogenetically located in the Lactobacillus pentosus sub-cluster. In L. pentosus SYBC-MI, there is a circular chromosome (3288615 bps) and 11,466 bps plasmids. GC content is 44.03%. The number of predicted genes is 3,129, with 16 rRNAs and 74 tRNAs present. During the fermentation of foxtail millet by seven Lactobacillus pentosus (S1–7) strains isolated from sour honey, a potential tryptophan accumulating isolate, Lactobacillus pentosus S4, was obtained, which could reach a maximum tryptophan content of 238.43 mgL-1 that is 1.80 times the initial tryptophan content in the fermentation broth. This strain has strong acid tolerance, salt tolerance, and fermentation acid production abilities. This strain degrades nitrite at a rate of over 99%, and it has high probiotic potential as well. This project has established a solid foundation for further exploring the excellent lactic acid bacteria in sour honey. It is also investigating the key taxa and their role in the environment. According to the results of our studies, these LAB isolates provide a lot of potential for use in the future, as a source of probiotics for human, animals, and starter cultures for food applications.</p

    Image3_Bacterial diversity of stingless bee honey in Yunnan, China: isolation and genome sequencing of a novel acid-resistant Lactobacillus pentosus (SYBC-MI) with probiotic and L. tryptophan producing potential via millet fermentation.TIF

    No full text
    Stingless bee (Hymenoptera, Apidae, and Trigona) honey is a remarkable “miracle liquid” with a wide range of medical benefits for conditions including gastroenteritis, cataracts, and wound healing. Our study aimed to isolate, identify, and characterize acid-resistant Lactobacillus spp. from sour honey distributed in Yunnan, China. To assess the safety of an entirely novel Lactobacillus pentosus strain, S4 (OM618128), based on probiotic property evaluation and whole-genome sequencing analysis. A 16S rRNA gene high-throughput sequencing analysis showed that Lactobacillus was abundant at the genus level in sour honey. Seven Lactobacillus strains (viz. S1–7) were isolated from sour honey using a multiple-anaerobic culture enrichment method. One potential acid-resistant isolate, Lactobacillus sp. S4, was obtained after screening the seven Lactobacillus isolates, and it had the highest lactic acid production (17.62 g/L), followed by Lactobacillus sp. S3 (17.07 g/L). Phylogenetic and comparative analyses of conserved sequence regions have shown that all seven strains are phylogenetically located in the Lactobacillus pentosus sub-cluster. In L. pentosus SYBC-MI, there is a circular chromosome (3288615 bps) and 11,466 bps plasmids. GC content is 44.03%. The number of predicted genes is 3,129, with 16 rRNAs and 74 tRNAs present. During the fermentation of foxtail millet by seven Lactobacillus pentosus (S1–7) strains isolated from sour honey, a potential tryptophan accumulating isolate, Lactobacillus pentosus S4, was obtained, which could reach a maximum tryptophan content of 238.43 mgL-1 that is 1.80 times the initial tryptophan content in the fermentation broth. This strain has strong acid tolerance, salt tolerance, and fermentation acid production abilities. This strain degrades nitrite at a rate of over 99%, and it has high probiotic potential as well. This project has established a solid foundation for further exploring the excellent lactic acid bacteria in sour honey. It is also investigating the key taxa and their role in the environment. According to the results of our studies, these LAB isolates provide a lot of potential for use in the future, as a source of probiotics for human, animals, and starter cultures for food applications.</p

    Image5_Bacterial diversity of stingless bee honey in Yunnan, China: isolation and genome sequencing of a novel acid-resistant Lactobacillus pentosus (SYBC-MI) with probiotic and L. tryptophan producing potential via millet fermentation.TIF

    No full text
    Stingless bee (Hymenoptera, Apidae, and Trigona) honey is a remarkable “miracle liquid” with a wide range of medical benefits for conditions including gastroenteritis, cataracts, and wound healing. Our study aimed to isolate, identify, and characterize acid-resistant Lactobacillus spp. from sour honey distributed in Yunnan, China. To assess the safety of an entirely novel Lactobacillus pentosus strain, S4 (OM618128), based on probiotic property evaluation and whole-genome sequencing analysis. A 16S rRNA gene high-throughput sequencing analysis showed that Lactobacillus was abundant at the genus level in sour honey. Seven Lactobacillus strains (viz. S1–7) were isolated from sour honey using a multiple-anaerobic culture enrichment method. One potential acid-resistant isolate, Lactobacillus sp. S4, was obtained after screening the seven Lactobacillus isolates, and it had the highest lactic acid production (17.62 g/L), followed by Lactobacillus sp. S3 (17.07 g/L). Phylogenetic and comparative analyses of conserved sequence regions have shown that all seven strains are phylogenetically located in the Lactobacillus pentosus sub-cluster. In L. pentosus SYBC-MI, there is a circular chromosome (3288615 bps) and 11,466 bps plasmids. GC content is 44.03%. The number of predicted genes is 3,129, with 16 rRNAs and 74 tRNAs present. During the fermentation of foxtail millet by seven Lactobacillus pentosus (S1–7) strains isolated from sour honey, a potential tryptophan accumulating isolate, Lactobacillus pentosus S4, was obtained, which could reach a maximum tryptophan content of 238.43 mgL-1 that is 1.80 times the initial tryptophan content in the fermentation broth. This strain has strong acid tolerance, salt tolerance, and fermentation acid production abilities. This strain degrades nitrite at a rate of over 99%, and it has high probiotic potential as well. This project has established a solid foundation for further exploring the excellent lactic acid bacteria in sour honey. It is also investigating the key taxa and their role in the environment. According to the results of our studies, these LAB isolates provide a lot of potential for use in the future, as a source of probiotics for human, animals, and starter cultures for food applications.</p

    Image7_Bacterial diversity of stingless bee honey in Yunnan, China: isolation and genome sequencing of a novel acid-resistant Lactobacillus pentosus (SYBC-MI) with probiotic and L. tryptophan producing potential via millet fermentation.JPEG

    No full text
    Stingless bee (Hymenoptera, Apidae, and Trigona) honey is a remarkable “miracle liquid” with a wide range of medical benefits for conditions including gastroenteritis, cataracts, and wound healing. Our study aimed to isolate, identify, and characterize acid-resistant Lactobacillus spp. from sour honey distributed in Yunnan, China. To assess the safety of an entirely novel Lactobacillus pentosus strain, S4 (OM618128), based on probiotic property evaluation and whole-genome sequencing analysis. A 16S rRNA gene high-throughput sequencing analysis showed that Lactobacillus was abundant at the genus level in sour honey. Seven Lactobacillus strains (viz. S1–7) were isolated from sour honey using a multiple-anaerobic culture enrichment method. One potential acid-resistant isolate, Lactobacillus sp. S4, was obtained after screening the seven Lactobacillus isolates, and it had the highest lactic acid production (17.62 g/L), followed by Lactobacillus sp. S3 (17.07 g/L). Phylogenetic and comparative analyses of conserved sequence regions have shown that all seven strains are phylogenetically located in the Lactobacillus pentosus sub-cluster. In L. pentosus SYBC-MI, there is a circular chromosome (3288615 bps) and 11,466 bps plasmids. GC content is 44.03%. The number of predicted genes is 3,129, with 16 rRNAs and 74 tRNAs present. During the fermentation of foxtail millet by seven Lactobacillus pentosus (S1–7) strains isolated from sour honey, a potential tryptophan accumulating isolate, Lactobacillus pentosus S4, was obtained, which could reach a maximum tryptophan content of 238.43 mgL-1 that is 1.80 times the initial tryptophan content in the fermentation broth. This strain has strong acid tolerance, salt tolerance, and fermentation acid production abilities. This strain degrades nitrite at a rate of over 99%, and it has high probiotic potential as well. This project has established a solid foundation for further exploring the excellent lactic acid bacteria in sour honey. It is also investigating the key taxa and their role in the environment. According to the results of our studies, these LAB isolates provide a lot of potential for use in the future, as a source of probiotics for human, animals, and starter cultures for food applications.</p
    corecore