145 research outputs found
Recommended from our members
Novel Liquid Argon Time-Projection Chamber Readouts
Liquid argon time-projection chambers (LArTPCs) have become a prominent tool for experiments in particle physics. Recent years have yielded significant advances in the techniques used to capture the signals generated by these cryogenic detectors. This article summarizes these novel developments for detection of ionization electrons and scintillation photons in LArTPCs. New methods to capture ionization signals address the challenges of scaling traditional techniques to the large scales necessary for future experiments. Pixelated readouts improve signal fidelity and expand the applicability of LArTPCs to higher-rate environments. Methods that leverage amplification in argon enable measurements in the keV regime and below. Techniques to enhance collection of argon scintillation photons improve calorimetry and expand the physics program for very large detectors. Future efforts aim to demonstrate systems for the combined detection of both electrons and photons
Enhancing Neutrino Event Reconstruction with Pixel-Based 3D Readout for Liquid Argon Time Projection Chambers
In this paper we explore the potential improvements in neutrino event
reconstruction that a 3D pixelated readout could offer over a 2D projective
wire readout for liquid argon time projection chambers. We simulate and study
events in two generic, idealized detector configurations for these two designs,
classifying events in each sample with deep convolutional neural networks to
compare the best 2D results to the best 3D results. In almost all cases we find
that the 3D readout provides better reconstruction efficiency and purity than
the 2D projective wire readout, with the advantages of 3D being particularly
evident in more complex topologies, such as electron neutrino charged current
events. We conclude that the use of a 3D pixelated detector could significantly
enhance the reach and impact of future liquid argon TPC experiments physics
program, such as DUNE
First operation of a multi-channel Q-Pix prototype: measuring transverse electron diffusion in a gas time projection chamber
We report measurements of the transverse diffusion of electrons in P-10 gas
(90% Ar, 10% CH4) in a laboratory-scale time projection chamber (TPC) utilizing
a novel pixelated signal capture and digitization technique known as Q-Pix. The
Q-Pix method incorporates a precision switched integrating transimpedance
amplifier whose output is compared to a threshold voltage. Upon reaching the
threshold, a comparator sends a 'reset' signal, initiating a discharge of the
integrating capacitor. The time difference between successive resets is
inversely proportional to the average current at the pixel in that time
interval, and the number of resets is directly proportional to the total
collected charge. We developed a 16-channel Q-Pix prototype fabricated from
commercial off-the-shelf components and coupled them to 16 concentric annular
anode electrodes to measure the spatial extent of the electron swarm that
reaches the anode after drifting through the uniform field of the TPC. The
swarm is produced at a gold photocathode using pulsed UV light. The measured
transverse diffusion agrees with simulations in PyBoltz across a range of
operating pressures (200-1500 Torr). These results demonstrate that a Q-Pix
readout can successfully reconstruct the ionization topology in a TPC.Comment: 18 pages, 9 figure
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models.
To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG- bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood develop- ment, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google- internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting
Research and Development for Near Detector Systems Towards Long Term Evolution of Ultra-precise Long-baseline Neutrino Experiments
With the discovery of non-zero value of mixing angle, the next generation of long-baseline neutrino (LBN) experiments offers the possibility of obtaining statistically significant samples of muon and electron neutrinos and anti-neutrinos with large oscillation effects. In this document we intend to highlight the importance of Near Detector facilities in LBN experiments to both constrain the systematic uncertainties affecting oscillation analyses but also to perform, thanks to their close location, measurements of broad benefit for LBN physics goals. A strong European contribution to these efforts is possible
Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores
A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació
- …