7 research outputs found
Protocol of the SOMNIA project : an observational study to create a neurophysiological database for advanced clinical sleep monitoring
Introduction Polysomnography (PSG) is the primary tool for sleep monitoring and the diagnosis of sleep disorders. Recent advances in signal analysis make it possible to reveal more information from this rich data source. Furthermore, many innovative sleep monitoring techniques are being developed that are less obtrusive, easier to use over long time periods and in the home situation. Here, we describe the methods of the Sleep and Obstructive Sleep Apnoea Monitoring with Non-Invasive Applications (SOMNIA) project, yielding a database combining clinical PSG with advanced unobtrusive sleep monitoring modalities in a large cohort of patients with various sleep disorders. The SOMNIA database will facilitate the validation and assessment of the diagnostic value of the new techniques, as well as the development of additional indices and biomarkers derived from new and/or traditional sleep monitoring methods.
Methods and analysis We aim to include at least 2100 subjects (both adults and children) with a variety of sleep disorders who undergo a PSG as part of standard clinical care in a dedicated sleep centre. Full-video PSG will be performed according to the standards of the American Academy of Sleep Medicine. Each recording will be supplemented with one or more new monitoring systems, including wrist-worn photoplethysmography and actigraphy, pressure sensing mattresses, multimicrophone recording of respiratory sounds including snoring, suprasternal pressure monitoring and multielectrode electromyography of the diaphragm
Low-Power Wearable Respiratory Sound Sensing
Building upon the findings from the field of automated recognition of respiratory sound patterns, we propose a wearable wireless sensor implementing on-board respiratory sound acquisition and classification, to enable continuous monitoring of symptoms, such as asthmatic wheezing. Low-power consumption of such a sensor is required in order to achieve long autonomy. Considering that the power consumption of its radio is kept minimal if transmitting only upon (rare) occurrences of wheezing, we focus on optimizing the power consumption of the digital signal processor (DSP). Based on a comprehensive review of asthmatic wheeze detection algorithms, we analyze the computational complexity of common features drawn from short-time Fourier transform (STFT) and decision tree classification. Four algorithms were implemented on a low-power TMS320C5505 DSP. Their classification accuracies were evaluated on a dataset of prerecorded respiratory sounds in two operating scenarios of different detection fidelities. The execution times of all algorithms were measured. The best classification accuracy of over 92%, while occupying only 2.6% of the DSP’s processing time, is obtained for the algorithm featuring the time-frequency tracking of shapes of crests originating from wheezing, with spectral features modeled using energy
Audio-based snore detection using deep neural networks
Background and Objective: Snoring is a prevalent phenomenon. It may be benign, but can also be a symptom of obstructive sleep apnea (OSA) a prevalent sleep disorder. Accurate detection of snoring may help with screening and diagnosis of OSA. Methods: We introduce a snore detection algorithm based on the combination of a convolutional neural network (CNN) and a recurrent neural network (RNN). We obtained audio recordings of 38 subjects referred to a clinical center for a sleep study. All subjects were recorded by a total of 5 microphones placed at strategic positions around the bed. The CNN was used to extract features from the sound spectrogram, while the RNN was used to process the sequential CNN output and to classify the audio events to snore and non-snore events. We also addressed the impact of microphone placement on the performance of the algorithm. Results: The algorithm achieved an accuracy of 95.3 ± 0.5%, a sensitivity of 92.2 ± 0.9%, and a specificity of 97.7 ± 0.4% over all microphones in snore detection on our data set including 18412 sound events. The best accuracy (95.9%) was observed from the microphone placed about 70 cm above the subject's head and the worst (94.4%) was observed from the microphone placed about 130 cm above the subject's head. Conclusion: Our results suggest that our method detects snore events from audio recordings with high accuracy and that microphone placement does not have a major impact on detection performance. Keywords snore detectionconvolutional neural networkrecurrent neural networkaudio signal processingconstant Q transformationbody-position in slee
Recurrent neural network for classification of snoring and non-snoring sound events
Obstructive sleep apnea (OSA) is a disorder that affects up to 38% of the western population. It is characterized by repetitive episodes of partial or complete collapse of the upper airway during sleep. These episodes are almost always accompanied by loud snoring. Questionnaires such as STOP-BANG exploit snoring to screen for OSA. However, they are not quantitative and thus do not exploit its full potential. A method for automatic detection of snoring in whole-night recordings is required to enable its quantitative evaluation. In this study, we propose such a method. The centerpiece of the proposed method is a recurrent neural network for modeling of sequential data with variable length. Mel-frequency cepstral coefficients, which were extracted from snoring and non-snoring sound events, were used as inputs to the proposed network. A total of 20 subjects referred to clinical sleep recording were also recorded by a microphone that was placed 70 cm from the top end of the bed. These recordings were used to assess the performance of the proposed method. When it comes to the detection of snoring events, our results show that the proposed method has an accuracy of 95%, sensitivity of 92%, and specificity of 98%. In conclusion, our results suggest that the proposed method may improve the process of snoring detection and with that the process of OSA screening. Follow-up clinical studies are required to confirm this potential
Protocol of the SOMNIA project: an observational study to create a neurophysiological database for advanced clinical sleep monitoring
INTRODUCTION: Polysomnography (PSG) is the primary tool for sleep monitoring and the diagnosis of sleep disorders. Recent advances in signal analysis make it possible to reveal more information from this rich data source. Furthermore, many innovative sleep monitoring techniques are being developed that are less obtrusive, easier to use over long time periods and in the home situation. Here, we describe the methods of the Sleep and Obstructive Sleep Apnoea Monitoring with Non-Invasive Applications (SOMNIA) project, yielding a database combining clinical PSG with advanced unobtrusive sleep monitoring modalities in a large cohort of patients with various sleep disorders. The SOMNIA database will facilitate the validation and assessment of the diagnostic value of the new techniques, as well as the development of additional indices and biomarkers derived from new and/or traditional sleep monitoring methods. METHODS AND ANALYSIS: We aim to include at least 2100 subjects (both adults and children) with a variety of sleep disorders who undergo a PSG as part of standard clinical care in a dedicated sleep centre. Full-video PSG will be performed according to the standards of the American Academy of Sleep Medicine. Each recording will be supplemented with one or more new monitoring systems, including wrist-worn photoplethysmography and actigraphy, pressure sensing mattresses, multimicrophone recording of respiratory sounds including snoring, suprasternal pressure monitoring and multielectrode electromyography of the diaphragm. ETHICS AND DISSEMINATION: The study was reviewed by the medical ethical committee of the Maxima Medical Center (Eindhoven, the Netherlands, File no: N16.074). All subjects provide informed consent before participation.The SOMNIA database is built to facilitate future research in sleep medicine. Data from the completed SOMNIA database will be made available for collaboration with researchers outside the institute