1,568 research outputs found

    From the microcosm of the atomic nuclei to the macrocosm of the stars

    Full text link
    A necessary condition for the reliable modelling of the structure or evolution of the stars and of their concomitant nucleosynthesis is the availability of good quality nuclear data in a very wide area of the chart of nuclides. This short review presents a non-exhaustive list of nuclear data of astrophysics interest (masses, β\beta-decays, thermonuclear and non-thermonuclear reaction rates) for nuclides at the bottom of the valley of nuclear stability (mainly involved in the modelling of non-explosive phases of stellar evolution), or for more or less highly exotic nuclides (to be considered in the description of stellar explosions). Special emphasis is put on the importance of providing quality nuclear data bases that can be easily used by astrophysicists.Comment: 6 pages, To appear in Proceedings of International Conference on Nuclear Data for Science and Technology 2007 (ND2007), Nice, Franc

    Synthesis of 19F in Wolf-Rayet stars

    Get PDF
    Meynet and Arnould (1993) have suggested that Wolf-Rayet (WR) stars could significantly contaminate the Galaxy with 19F. In their scenario, 19F is synthesized at the beginning of the He-burning phase from the 14N left over by the previous CNO-burning core, and is ejected in the interstellar medium when the star enters its WC phase. Recourse to CNO seeds makes the 19F yields metallicity-dependent. These yields are calculated on grounds of detailed stellar evolutionary sequences for an extended range of initial masses (from 25 to 120 Msol) and metallicities (Z = 0.008, 0.02 and 0.04). The adopted mass loss rate prescription enables to account for the observed variations of WR populations in different environments. The 19F abundance in the WR winds of 60 Msol model stars is found to be about 10 to 70 times higher than its initial value, depending on the metallicity. This prediction is used in conjunction with a very simple model for the chemical evolution of the Galaxy to predict that WR stars could be significant (dominant?) contributors to the solar system fluorine content. We also briefly discuss the implications of our model on the possible detection of fluorine at high redshift.Comment: 2 figures; requires LaTeX A&A class file; accepted for publication in Astron. Astrophy

    Hope and Inquietudes in Nucleo-cosmochronology

    Get PDF
    Critical views are presented on some nucleo-cosmochronological questions. Progress has been made recently in the development of the 187Re-187Os cosmochronometry. From this, there is good hope for this clock to become of the highest quality for the nuclear dating of the Universe. The simultaneous observation of Th and U in ultra-metal-poor stars would also be a most interesting prospect. In contrast, a serious inquietude is expressed about the reliability of the chronometric attempts based on the classical 232Th-238U and 235U-238U pairs, as well as on the Th (without U) abundance determinations in ultra-metal poor stars.Comment: 9 pages, no figures; ASP Conference Series: "Astrophysical Ages and Time Scales

    Nuclear Astrophysics

    Get PDF
    Nuclear astrophysics is that branch of astrophysics which helps understanding some of the many facets of the Universe through the knowledge of the microcosm of the atomic nucleus. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other sub-fields of physics and chemistry have also contributed to that advance. Many long-standing problems remain to be solved, however, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endanger old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics.Comment: LaTeX2e with iopart.cls, 84 pages, 19 figures (graphicx package), 374 updated references. Published in Reports on Progress in Physics, vol.62, pp. 395-464 (1999

    News from the p-process: is the s-process a troublemaker?

    Get PDF
    The most detailed calculations of the p-process call for its development in the O/Ne layers of Type II supernovae. In spite of their overall success in reproducing the solar system content of p-nuclides, they suggest a significant underproduction of the light Mo and Ru isotopes. On grounds of a model for the explosion of a 25 solar mass star with solar metallicity, we demonstrate that this failure might just be related to the uncertainties left in the rate of the 22Ne(alpha,n)25Mg neutron producing reaction. The latter indeed has a direct impact on the distribution of the s-process seeds for the p-process.Comment: 8 pages, 3 figures, Review talk at Nuclei in the Cosmos 2000, Aarhus, June 27 - July 1, 200

    Fluorine production in intermediate-mass stars

    Get PDF
    The 19F production during the first dozen thermal pulses of AGB stars with (M=3,Z=0.02), (M=6,Z=0.02) and (M=3,Z=0.001) is investigated on grounds of detailed stellar models and of revised rates for 15N(a,g)19F and 18O(a,g)22Ne. These calculations confirm an early expectation that 19F {\it is} produced in AGB thermal pulses. They also enlarge substantially these previous results by showing that the variations of the level of 19F production during the evolution is very sensitive to the maximum temperature reached at the base of the pulse. These variations are analyzed in detail, and are shown to result from a subtle balance between different nuclear effects (mainly 19F production or destruction in a pulse, and 15N synthesis during the interpulse), possibly super-imposed on dilution effects in more or less extended pulse convective tongues. Our calculations, as most others, do not predict the third dredge-up self- consistently. When parametrized, it appears that our models of intermediate-mass AGB stars are able to account only for the lowest 19F overabundances observed in solar-metallicity MS, S and C stars. That conclusion is expected to hold true for low-mass stars when F production results from secondary 13C only. Massive AGB stars, on the other hand, are not expected to build up large surface F abundanc- es. Therefore, the large F overabundance reported for the super Li-rich star WZ Cas (where HBB is supposed to be operating) remains unexplained so far. Our results for the (M=3,Z=0.001) star indicate that F surface overabundances can also be expected in low-metallicity stars provided that third dredge-ups occur after the early cool pulses. The relative increase in the surface 19F/12C ratio is, however, lower in the low-metallicity than in the solar-metallicity star. No observations areComment: 27 pages, includes figures, postcript file (A&A format, 15 pages including figures) can be found via anonymous ftp at ftp://obsftp.unige.ch/pub/mowlavi/fluor.ps.gz ; accepted by A&
    • …
    corecore