149 research outputs found

    Impact of the introduction of pneumococcal conjugate vaccine on immunization coverage among infants

    Get PDF
    Background The introduction of pneumococcal conjugate vaccine (PCV) to the U.S. recommended childhood immunization schedule in the year 2000 added three injections to the number of vaccinations a child is expected to receive during the first year of life. Surveys have suggested that the addition of PCV has led some immunization providers to move other routine childhood vaccinations to later ages, which could increase the possibility of missing these vaccines. The purpose of this study was to evaluate whether introduction of PCV affected immunization coverage for recommended childhood vaccinations among 13-month olds in four large provider groups. Methods In this retrospective cohort study, we analyzed computerized data on vaccinations for 33,319 children in four large provider groups before and after the introduction of PCV. The primary outcome was whether the child was up to date for all non-PCV recommended vaccinations at 13 months of age. Logistic regression was used to evaluate the association between PCV introduction and the primary outcome. The secondary outcome was the number of days spent underimmunized by 13 months. The association between PCV introduction and the secondary outcome was evaluated using a two-part modelling approach using logistic and negative binomial regression. Results Overall, 93% of children were up-to-date at 13 months, and 70% received all non-PCV vaccinations without any delay. Among the entire study population, immunization coverage was maintained or slightly increased from the pre-PCV to post-PCV periods. After multivariate adjustment, children born after PCV entered routine use were less likely to be up-to-date at 13 months in one provider group (Group C: OR = 0.5; 95% CI: 0.3 – 0.8) and were less likely to have received all vaccine doses without any delay in two Groups (Group B: OR = 0.4, 95% CI: 0.3 – 0.6; Group C: OR = 0.5, 95% CI: 0.4 – 0.7). This represented 3% fewer children in Group C who were up-to-date and 14% (Group C) to 16% (Group B) fewer children who spent no time underimmunized at 13 months after PCV entered routine use compared to the pre-PCV baseline. Some disruptions in immunization delivery were also observed concurrent with temporary recommendations to suspend the birth dose of hepatitis B vaccine, preceding the introduction of PCV. Conclusion These findings suggest that the introduction of PCV did not harm overall immunization coverage rates in populations with good access to primary care. However, we did observe some disruptions in the timely delivery of other vaccines coincident with the introduction of PCV and the suspension of the birth dose of hepatitis B vaccine. This study highlights the need for continued vigilance in coming years as the U.S. introduces new childhood vaccines and policies that may change the timing of existing vaccines

    Identification of a Vitamin-D Receptor Antagonist, MeTC7, which Inhibits the Growth of Xenograft and Transgenic Tumors In Vivo

    Get PDF
    Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (5), which can be synthesized from 7-dehydrocholesterol (6) in two steps, inhibits VDR selectively, suppresses the viability of cancer cell-lines, and reduces the growth of the spontaneous transgenic TH-MYCN neuroblastoma and xenografts in vivo. The VDR selectivity of 5 against RXRα and PPAR-γ was confirmed, and docking studies using VDR-LBD indicated that 5 induces major changes in the binding motifs, which potentially result in VDR antagonistic effects. These data highlight the therapeutic benefits of targeting VDR for the treatment of malignancies and demonstrate the creation of selective VDR antagonists that are easy to synthesize

    Antibody Responses against Xenotropic Murine Leukemia Virus-Related Virus Envelope in a Murine Model

    Get PDF
    Xenotropic murine leukemia virus-related virus (XMRV) was recently discovered to be the first human gammaretrovirus that is associated with chronic fatigue syndrome and prostate cancer (PC). Although a mechanism for XMRV carcinogenesis is yet to be established, this virus belongs to the family of gammaretroviruses well known for their ability to induce cancer in the infected hosts. Since its original identification XMRV has been detected in several independent investigations; however, at this time significant controversy remains regarding reports of XMRV detection/prevalence in other cohorts and cell type/tissue distribution. The potential risk of human infection, coupled with the lack of knowledge about the basic biology of XMRV, warrants further research, including investigation of adaptive immune responses. To study immunogenicity in vivo, we vaccinated mice with a combination of recombinant vectors expressing codon-optimized sequences of XMRV gag and env genes and virus-like particles (VLP) that had the size and morphology of live infectious XMRV.Immunization elicited Env-specific binding and neutralizing antibodies (NAb) against XMRV in mice. The peak titers for ELISA-binding antibodies and NAb were 1:1024 and 1:464, respectively; however, high ELISA-binding and NAb titers were not sustained and persisted for less than three weeks after immunizations.Vaccine-induced XMRV Env antibody titers were transiently high, but their duration was short. The relatively rapid diminution in antibody levels may in part explain the differing prevalences reported for XMRV in various prostate cancer and chronic fatigue syndrome cohorts. The low level of immunogenicity observed in the present study may be characteristic of a natural XMRV infection in humans

    Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7

    Get PDF
    PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2