78 research outputs found

    Controlling qubit networks in polynomial time

    Full text link
    Future quantum devices often rely on favourable scaling with respect to the system components. To achieve desirable scaling, it is therefore crucial to implement unitary transformations in an efficient manner. We develop an upper bound for the minimum time required to implement a unitary transformation on a generic qubit network in which each of the qubits is subject to local time dependent controls. The set of gates is characterized that can be implemented in a time that scales at most polynomially in the number of qubits. Furthermore, we show how qubit systems can be concatenated through controllable two body interactions, making it possible to implement the gate set efficiently on the combined system. Finally a system is identified for which the gate set can be implemented with fewer controls. The considered model is particularly important, since it describes electron-nuclear spin interactions in NV centers

    Control of Open Quantum Systems

    Get PDF

    Generation of two-mode entangled states by quantum reservoir engineering

    Full text link
    A method for generating entangled cat states of two modes of a microwave cavity field is proposed. Entanglement results from the interaction of the field with a beam of atoms crossing the microwave resonator, giving rise to non-unitary dynamics of which the target entangled state is a fixed point. We analyse the robustness of the generated two-mode photonic "cat state" against dephasing and losses by means of numerical simulation. This proposal is an instance of quantum reservoir engineering of photonic systems.Comment: 8 pages, 7 figure

    A continuous-time diffusion limit theorem for dynamical decoupling and intrinsic decoherence

    Get PDF
    We discuss a few mathematical aspects of random dynamical decoupling, a key tool procedure in quantum information theory. In particular, we place it in the context of discrete stochastic processes, limit theorems and CPT semigroups on matrix algebras. We obtain precise analytical expressions for expectation and variance of the density matrix and fidelity over time in the continuum-time limit depending on the system Lindbladian, which then lead to rough short-time estimates depending only on certain coupling strengths. We prove that dynamical decoupling does not work in the case of intrinsic (i.e., not environment-induced) decoherence, and together with the above-mentioned estimates this yields a novel method of partially identifying intrinsic decoherence.Comment: 24 pages. Final published versio

    Control of open quantum systems: case study of the central spin model

    Get PDF
    We study the controllability of a central spin guided by a classical field and interacting with a spin bath, showing that the central spin is fully controllable independently of the number of bath spins. Additionally we find that for unequal system-bath couplings even the bath becomes controllable by acting on the central spin alone. We then analyze numerically how the time to implement gates on the central spin scales with the number of bath spins and conjecture that for equal system-bath couplings it reaches a saturation value. We provide evidence that sometimes noise can be effectively suppressed through control

    Dynamic decoupling and homogenization of continuous variable systems

    Get PDF
    For finite-dimensional quantum systems, such as qubits, a well established strategy to protect such systems from decoherence is dynamical decoupling. However many promising quantum devices, such as oscillators, are infinite dimensional, for which the question if dynamical decoupling could be applied remained open. Here we first show that not every infinite-dimensional system can be protected from decoherence through dynamical decoupling. Then we develop dynamical decoupling for continuous variable systems which are described by quadratic Hamiltonians. We identify a condition and a set of operations that allow us to map a set of interacting harmonic oscillators onto a set of non-interacting oscillators rotating with an averaged frequency, a procedure we call homogenization. Furthermore we show that every quadratic system-environment interaction can be suppressed with two simple operations acting only on the system. Using a random dynamical decoupling or homogenization scheme, we develop bounds that characterize how fast we have to work in order to achieve the desired uncoupled dynamics. This allows us to identify how well homogenization can be achieved and decoherence can be suppressed in continuous variable systems.Comment: 14 page

    The roles of drift and control field constraints upon quantum control speed limits

    Get PDF
    In this work we derive a lower bound for the minimum time required to implement a target unitary transformation through a classical time-dependent field in a closed quantum system. The bound depends on the target gate, the strength of the internal Hamiltonian and the highest permitted control field amplitude. These findings reveal some properties of the reachable set of operations, explicitly analyzed for a single qubit. Moreover, for fully controllable systems, we identify a lower bound for the time at which all unitary gates become reachable. We use numerical gate optimization in order to study the tightness of the obtained bounds. It is shown that in the single qubit case our analytical findings describe the relationship between the highest control field amplitude and the minimum evolution time remarkably well. Finally, we discuss both challenges and ways forward for obtaining tighter bounds for higher dimensional systems, offering a discussion about the mathematical form and the physical meaning of the bound.Comment: Published version, NJP 19 10301
    • …
    corecore