1,259 research outputs found
Measurement of J/ψ production in association with a W ± boson with pp data at 8 TeV
A measurement of the production of a prompt J/ψ meson in association with a W± boson with W± → μν and J/ψ → μ+μ− is presented for J/ψ transverse momenta in the range 8.5–150 GeV and rapidity |yJ/ψ| < 2.1 using ATLAS data recorded in 2012 at the LHC. The data were taken at a proton-proton centre-of-mass energy of s = 8 TeV and correspond to an integrated luminosity of 20.3 fb−1. The ratio of the prompt J/ψ plus W± cross-section to the inclusive W± cross-section is presented as a differential measurement as a function of J/ψ transverse momenta and compared with theoretical predictions using different double-parton-scattering cross-sections. [Figure not available: see fulltext.]
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Measurement of the production cross-section of a single top quark in association with a Z boson in proton–proton collisions at 13 TeV with the ATLAS detector
The production of a top quark in association with a Z boson is investigated. The proton–proton collision data collected by the ATLAS experiment at the LHC in 2015 and 2016 at a centre-of-mass energy of s=13TeV are used, corresponding to an integrated luminosity of 36.1fb −1 . Events containing three identified leptons (electrons and/or muons) and two jets, one of which is identified as a b-quark jet are selected. The major backgrounds are diboson, tt¯ and Z+jets production. A neural network is used to improve the background rejection and extract the signal. The resulting significance is 4.2σ in the data and the expected significance is 5.4σ. The measured cross-section for tZq production is 600±170(stat.)±140(syst.)fb
Search for top quark decays t → qH, with H → γγ, in √s=13 TeV pp collisions using the ATLAS detector
This article presents a search for flavour-changing neutral currents in the decay of a top quark into an up-type (q = c, u) quark and a Higgs boson, where the Higgs boson decays into two photons. The proton-proton collision data set analysed amounts to 36.1 fb −1 at s=13 TeV collected by the ATLAS experiment at the LHC. Top quark pair events are searched for, where one top quark decays into qH and the other decays into bW. Both the hadronic and leptonic decay modes of the W boson are used. No significant excess is observed and an upper limit is set on the t → cH branching ratio of 2.2 × 10 −3 at the 95% confidence level, while the expected limit in the absence of signal is 1.6 × 10 −3 . The corresponding limit on the tcH coupling is 0.090 at the 95% confidence level. The observed upper limit on the t → uH branching ratio is 2.4 × 10 −3
Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector
Detailed measurements of t-channel single top-quark production are presented. They use 20.2 fb - 1 of data collected by the ATLAS experiment in proton–proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be σtot(tq)=56.7-3.8+4.3pb for top-quark production and σtot(t¯q)=32.9-2.7+3.0pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be R t = 1.72 ± 0.09. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available
Search for minimal supersymmetric standard model Higgs Bosons H / A and for a Z' boson in the ττ final state produced in pp collisions at √s=13 TeV with the ATLAS detector
A search for neutral Higgs bosons of the minimal supersymmetric standard model (MSSM) and for a heavneutral Z′ boson is performed using a data sample corresponding to an integrated luminosity of 3.2 fb⁻¹ from proton–proton collisions at √s = 13 TeV recorded by the ATLAS detector at the LHC. The heavy resonance is assumed to decay to a τ⁺ τ⁻ pair with at least one τ lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2–1.2 TeV for the MSSM neutral Higgs bosons and 0.5–2.5 TeV for the heavy neutral Z′ boson. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in MSSM and Z′ benchmark scenarios. The most stringent constraints on the MSSM m_{A} – tan β space exclude at 95 % confidence level (CL) tan β > 7.6 for m_{A} = 200 GeV in the m^{mod+}/{h} MSSM scenario. For the Sequential Standard Model, a Z'_{SSM} mass up to 1.90 TeV is excluded at 95 % CL and masses up to 1.82–2.17 TeV are excluded for a Z'_{SFM} of the strong flavour model
Recommended from our members
Search for single production of vector-like quarks decaying into Wb in pp collisions at √s = 8 TeV with the ATLAS detector
A search for singly produced vector-like Q quarks, where Q can be either a T quark with charge + 2 / 3 or a Y quark with charge - 4 / 3 , is performed in proton–proton collisions recorded with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 20.3 fb- 1 and was produced with a centre-of-mass energy of s=8 TeV. This analysis targets Q→ Wb decays where the W boson decays leptonically. A veto on massive large-radius jets is used to reject the dominant tt¯ background. The reconstructed Q-candidate mass, ranging from 0.4 to 1.2 TeV, is used in the search to discriminate signal from background processes. No significant deviation from the Standard Model expectation is observed, and limits are set on the Q→ Wb cross-section times branching ratio. The results are also interpreted as limits on the QWb coupling and the mixing with the Standard Model sector for a singlet T quark or a Y quark from a doublet. T quarks with masses below 0.95 TeV are excluded at 95 % confidence level, assuming a unit coupling and a BR(T→ Wb) = 0.5 , whereas the expected limit is 1.10 TeV
Recommended from our members
Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at √s=8TeV using the ATLAS detector
© 2016, CERN for the benefit of the ATLAS collaboration.Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, tt¯ system and event-level kinematic observables in proton–proton collisions at a centre-of-mass energy of s=8TeV. The observables have been chosen to emphasize the tt¯ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb- 1, recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a b-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used
- …