40 research outputs found
Low temperature study of field induced antiferro-ferromagnetic transition in Pd doped FeRh
The first order antiferromagnetic (AFM) to ferromagnetic (FM) transition in
the functional material Fe49(Rh0.93Pd0.07)51 has been studied at low
temperatures and high magnetic fields. We have addressed the non-monotonic
variation of lower critical field required for FM to AFM transition. It is
shown that critically slow dynamics of the transition dominates below 50 K. At
low temperature and high magnetic field, state of the system depends on the
measurement history resulting in tunable coexistence of AFM and FM phases. By
following cooling and heating in unequal magnetic field (CHUF) protocol it is
shown that equilibrium state at 6 Tesla magnetic field is AFM state. Glass like
FM state at 6 T (obtained after cooling in 8 T) shows reentrant transition with
increasing temperature; viz. devitrification to AFM state followed by melting
to FM state.Comment: 8 pages, 7 figure
Real Space Visualization of Thermomagnetic Irreversibility within Supercooling and Superheating Spinodals in using Scanning Hall Probe Microscopy
Phase coexistence across disorder-broadened and magnetic-field-induced first
order antiferromagnetic to ferrimagnetic transition in polycrystalline
has been studied mesoscopically by Scanning Hall Probe
Microscope at 120K and up to 5 Tesla magnetic fields. We have observed
hysteresis with varying magnetic field and the evolution of coexisting
antiferromagnetic and ferrimagnetic state on mesoscopic length scale. These
studies show that the magnetic state of the system at low field depends on the
path followed to reach 120 K. The low field magnetic states are mesoscopically
different for virgin and second field increasing cycle when 120 K is reached by
warming from 5K, but are the same within measurement accuracy when the
measuring temperature of 120K is reached from 300K by cooling