120 research outputs found
PHIPing Out: A Genetic Basis for Tumor Ulceration
Ulceration is a common negative prognostic marker of solid tumors including melanoma. The signaling basis of ulceration is being elucidated. PHIP has been found to be amplified in wild-type melanomas, resulting in Akt activation and aerobic glycolysis (Warburg effect), associated with ulceration. The ulceration phenotype likely represents the genotype of the reactive oxygen driven tumor, in which reactive oxygen drives angiopoietin-2 production, tumor growth, and invasion. This phenotype is amenable to pharmacologic intervention
Imipramine blue sensitively and selectively targets FLT3-ITD positive acute myeloid leukemia cells.
Aberrant cytokine signaling initiated from mutant receptor tyrosine kinases (RTKs) provides critical growth and survival signals in high risk acute myeloid leukemia (AML). Inhibitors to FLT3 have already been tested in clinical trials, however, drug resistance limits clinical efficacy. Mutant receptor tyrosine kinases are mislocalized in the endoplasmic reticulum (ER) of AML and play an important role in the non-canonical activation of signal transducer and activator of transcription 5 (STAT5). Here, we have tested a potent new drug called imipramine blue (IB), which is a chimeric molecule with a dual mechanism of action. At 200-300 nM concentrations, IB is a potent inhibitor of STAT5 through liberation of endogenous phosphatase activity following NADPH oxidase (NOX) inhibition. However, at 75-150 nM concentrations, IB was highly effective at killing mutant FLT3-driven AML cells through a similar mechanism as thapsigargin (TG), involving increased cytosolic calcium. IB also potently inhibited survival of primary human FLT3/ITD+ AML cells compared to FLT3/ITDneg cells and spared normal umbilical cord blood cells. Therefore, IB functions through a mechanism involving vulnerability to dysregulated calcium metabolism and the combination of fusing a lipophilic amine to a NOX inhibiting dye shows promise for further pre-clinical development for targeting high risk AML
Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties
An intact barrier function of the skin is important in maintaining skin health. The regulation of the skin barrier depends on a multitude of molecular and immunological signaling pathways. By examining the regulation of a healthy skin barrier, including maintenance of the acid mantle and appropriate levels of ceramides, dermatologists can better formulate solutions to address issues that are related to a disrupted skin barrier. Conversely, by understanding specific skin barrier disruptions that are associated with specific conditions, such as atopic dermatitis or psoriasis, the development of new compounds could target signaling pathways to provide more effective relief for patients. We aim to review key factors mediating skin barrier regulation and inflammation, including skin acidity, interleukins, nuclear factor kappa B, and sirtuin 3. Furthermore, we will discuss current and emerging treatment options for skin barrier conditions
Cooperative benefit for the combination of rapamycin and imatinib in tuberous sclerosis complex neoplasia
Tuberous sclerosis (TS) is a common autosomal-dominant disorder characterized by tumors of the skin, lung, brain, and kidneys. Monotherapy with rapamycin however resulted in partial regression of tumors, implying the involvement of additional pathways. We have previously implicated platelet-derived growth factor-BB in TS-related tumorigenesis, thus providing a rationale for a combination of mTOR/PDGF blockade using rapamycin and imatinib. Here, we test this combination using a well-established preclinical model of cutaneous tumorigenesis in TS, tsc2ang1 cells derived from a skin tumor from a mouse heterozygous for tsc2. Treatment of tsc2ang1 cells with a combination of rapamycin and imatinib led to an inhibition of proliferation compared with either vehicle treatment or treatment with rapamycin or imatinib monotherapy. Combination therapy also led to a decrease in Akt activation. Potent in vivo activity in animal experiments by combination therapy was noted, without toxicity to the animals. Our findings provide a rationale for the combined use of rapamycin and imatinib, both FDA approved drugs, for the treatment of TS
Expression of the neural stem cell markers NG2 and L1 in human angiomyolipoma: are angiomyolipomas neoplasms of stem cells?
Angiomyolipomas are benign tumors of the kidney which express phenotypes of smooth muscle, fat, and melanocytes. These tumors appear with increased frequency in the autosomal dominant disorder tuberous sclerosis and are the leading cause of morbidity in adults with tuberous sclerosis. While benign, these tumors are capable of provoking life threatening hemorrhage and replacement of the kidney parenchyma, resulting in renal failure. The histogenesis of these tumors is currently unclear, although currently, we believe these tumors arise from perivascular epithelioid cells of which no normal counterpart has been convincingly demonstrated. Recently, stem cell precursors have been recognized that can give rise to smooth muscle and melanocytes. These precursors have been shown to express the neural stem cell marker NG2 and L1. In order to determine whether angiomyolipomas, which exhibit smooth muscle and melanocytic phenotypes, express NG2 and L1, we performed immunocytochemistry on a cell line derived from a human angiomyolipoma, and found that these cells are uniformly positive. Immunohistochemistry of human angiomyolipoma specimens revealed uniform staining of tumor cells, while renal cell carcinomas revealed positivity only of angiogenic vessels. These results support a novel histogenesis of angiomyolipoma as a defect in differentiation of stem cell precursors
Recommended from our members
Tris DBA palladium is highly effective against growth and metastasis of pancreatic cancer in an orthotopic model
Pancreatic carcinoma ranks among the most lethal of human cancers. Besides late detection, other factors contribute to its lethality, including a high degree of chemoresistance, invasion, and distant metastases. Currently, the mainstay of therapy involves resection of local disease in a minority of patients (Whipple procedure) and systemic gemcitabine. While systemic chemotherapy has some benefit, even with optimal treatment, the five year survival after diagnosis is dismal. Thus, treatment of pancreatic carcinoma remains a tremendous unmet need. The organometallic compound tris DBA palladium is a potent inhibitor of N-myristoyltransferase 1 (NMT1), an enzyme that catalyzes the transfer of myristate to protein substrates. This compound is highly effective in vivo against murine models of melanoma with both mutant and wild type b-RAF genotypes. Based upon the signaling similarities between melanoma and pancreatic carcinoma, we evaluated the efficacy of tris DBA palladium in vitro and in vivo against pancreatic carcinoma. We found that tris DBA palladium decreased proliferation and colony formation of pancreatic cancer cells in vitro. In an orthotopic mouse model, tris DBA palladium was highly active in inhibiting growth, ascites production, and distant metastases in vivo. Furthermore, tris DBA palladium impaired chemotaxis and inhibited cilia formation in Pan02 cells in a NMT1-dependent manner. We propose that NMT1 is a novel regulator of cilia formation and tris DBA palladium a novel inhibitor of cilia formation and metastasis in pancreatic cancer. Thus, further evaluation of tris DBA palladium for the treatment of pancreatic cancer is warranted
Secreted Frizzle-Related Protein 2 Stimulates Angiogenesis via a Calcineurin/NFAT Signaling Pathway
Secreted frizzle-related protein 2 (SFRP2), a modulator of Wnt-signaling, has recently been found to be overexpressed in the vasculature of 85% of human breast tumors, however its role in angiogenesis is unknown. We found that SFRP2 induced angiogenesis in the mouse Matrigel plug assay and the chick chorioallantoic membrane assay. SFRP2 inhibited hypoxia induced endothelial cell apoptosis, increased endothelial cell migration, and induced endothelial tube formation. The canonical Wnt-pathway was not affected by SFRP2 in endothelial cells, however, a component of the non-canonical Wnt/Ca++ pathway was affected by SFRP2, as demonstrated by an increase in NFATc3 in the nuclear fraction of SFRP2-treated endothelial cells. Tacrolimus, a calcineurin inhibitor which inhibits dephosphorylation of NFAT, inhibited SFRP2-induced endothelial tube formation. Tacrolimus 3 mg/kg/daily inhibited the growth of SVR angiosarcoma xenografts in mice by 46% (p=0.04). In conclusion, SFRP2 is a novel stimulator of angiogenesis that stimulates angiogenesis via a calcineurin/NFAT pathway, and may be a favorable target for the inhibition of angiogenesis in solid tumors
- …