679 research outputs found
Metal Additive Distribution in TiO2 and SnO2 Semiconductor Gas Sensor Nanostructured Materials
Recently, there has been an increasing interest in the electronics world for those aspects related to semiconducting gas sensor (SGS) materials. In view of the increasingly strict legal limits for pollutant gas emissions, there is a great interest in developing high performance gas sensors for applications such as controlling air pollution and exhaust gases. In this way, semiconductor gas sensors offer good advantages with respect to other gas sensor devices (such as spectroscopic and optic systems), due to their simple implementation, low cost and good reliability for real-time control systems. In the present work, we have been especially interested in the study of the different ways of metal additive distribution in the most common SGS materials used nowadays and furthermore in the physical and chemical sensing properties they can achieve
Engineering surface states of hematite based photoanodes for boosting photoelectrochemical water splitting
Hematite-based photoanodes are promising candidates for photoelectrochemical water splitting. However, the performance of pristine hematite semiconductors is unsatisfactory due to charge recombination occurring at different interfaces: Back contact, bulk and semiconductor/electrolyte interfaces. Increasing efforts have been focused on enhancing the performance of hematite based photoanodes via nanostructure control, doping, heterojunction construction, and surface modification with a secondary semiconductor or an oxygen evolution electrocatalyst. Most of the previous studies attributed the enhanced PEC water splitting performance to the changes in the donor density via doping, the formation of type II heterojunction via a secondary semiconductor coating and the improved water oxidation kinetics via coating oxygen evolution electrocatalysts. However, the role of surface states presented at the semiconductor/electrolyte interfaces of hematite-based photoanodes has been overlooked in previous investigations, which virtually play a critical role in determining the photoelectrochemical water oxidation process. In this review, we summarize the recent progress of various techniques employed for the detection of surface states of hematite photoanodes and highlight the important role of modifying surface states in the development of high performance hematite based photoanodes for photoelectrochemical water splitting application. The challenges and future prospects in the study of hematite based photoanodes are also discussed
Metal-organic framework-derived single atom catalysts for electrocatalytic reduction of carbon dioxide to C1 products
Electrochemical carbon dioxide reduction reaction (eCO RR) is an efficient strategy to relieve global environmental and energy issues by converting excess CO from the atmosphere to value-added products. Single-atom catalysts (SACs) derived from metal-organic frameworks (MOF), which feature unique active sites and adjustable structures, are emerging as extraordinary materials for eCO RR. By modulating the MOF precursors and their fabrication strategy, MOF-derived SACs with specific-site coordination configuration have been recently designed for the conversion of CO to targeted products. In the first part of this review, MOF synthesis routes to afford well-dispersed SACs along with the respective synthesis strategy have been systematically reviewed, and typical examples for each strategy have been discussed. Compared with traditional M-N active sites, SACs with regulated coordination structures have been rapidly developed for eCO RR. Secondly, the relationship between regulation of the coordination environment of the central metal atoms, including asymmetrical M-N sites, heteroatom doped M-N sites, and dual-metal active sites (M-M sites), and their respective catalytic performance has been systematically discussed. Finally, the challenges and future research directions for the application of SACs derived from MOFs for eCO RR have been proposed
Phonon confinement and plasmon-phonon interaction in nanowire based quantum wells
Resonant Raman spectroscopy is realized on closely spaced nanowire based
quantum wells. Phonon quantization consistent with 2.4 nm thick quantum wells
is observed, in agreement with cross-section transmission electron microscopy
measurements and photoluminescence experiments. The creation of a high density
plasma within the quantized structures is demonstrated by the observation of
coupled plasmon-phonon modes. The density of the plasma and thereby the
plasmon-phonon interaction is controlled with the excitation power. This work
represents a base for further studies on confined high density charge systems
in nanowires
Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications
Hollow nanostructures; Surface plasmon resonances (SPRs); Plasmon hybridizationNanoestructures buides; Ressonància de superfície de plasmó; Hibridació de plasmóNanoestructures vacías; Resonancia de superficie de plasmón; Hibridación de plasmónMetallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridization mechanism. The hybridization of the plasmons results in the enhancement of the plasmon fields along with more homogeneous distribution as well as the reduction of localized surface plasmon resonance (LSPR) quenching due to absorption. In this review, we summarize the efforts on the synthesis of hollow metal nanostructures with an emphasis on the galvanic replacement reaction. In the second part of this review, we discuss the advancements on the characterization of plasmonic properties of hollow nanostructures, covering the single nanoparticle experiments, nanoscale characterization via electron energy-loss spectroscopy and modeling and simulation studies. Examples of the applications, i.e. sensing, surface enhanced Raman spectroscopy, photothermal ablation therapy of cancer, drug delivery or catalysis among others, where hollow nanostructures perform better than their solid counterparts, are also evaluated
The Normative Implication of the B Corp Movement in the Business and Human Rights Context (abstract)
Over the past decades, issues of corporate accountability and social responsibility have risen to the forefront of international debate. The U.N. Guiding Principles on Business and Human Rights (Guiding Principles), endorsed by the U.N. HRC in June 2011, lays out authoritatively the state duty to protect and the corporate responsibility to respect human rights. In an effort to operationalize the Guiding Principles, the U.N. Working Group on Business and Human Rights has called on all states to develop a National Action Plan (NAP) regarding domestic implementation of the Guiding Principles. A key first-step in the creation of a NAP is the completion of a national baseline assessment, a taking of stock of the current conditions affecting the protection and promotion of human rights by the state and businesses alike. With over twenty-five countries now committed to the creation of a NAP, it is increasingly important to evaluate the existing corporate landscape, specifically structures that claim to be socially and ethically motivated.
The B Corp movement began in 2006, through the work of California based non-profit B-Lab. A B Corp is a business certified by B-Lab as committed to creating and supporting social and environmental rights. The B Corp movement has grown in size and stature, spreading into over thirty countries and garnering a reputation for excellence. Boosts to the movement have recently come from the certification of large multinational companies, and the interest of others that followed. As the B Corp movement continues to proliferate, it’s normative value on the business and human rights field merits analysis. What are the normative implications of the B Corp movement?—Is it a tool that should be embraced by business and human rights activists or one that undermines the movement by enabling corporations to claim an inability to take into account ethical considerations without adoption of a special corporate form
Electric field assisted dissolution of metal clusters in metal island films for photonic heterostructures
The dissolution of metal clusters in metal island films by the simultaneous application of electric field and temperature is reported. The consequent fading of surface plasmon resonance greatly modifies the optical properties of the samples. The dissolution process is verified in island films of different metals, obtained under different conditions and covered by different dielectric materials, as well as on multilayer dielectric stacks showing interferential properties. The tailoring possibilities of the optical behavior of metal island films combined with the inexpensive technical requirements of this approach open up the possibility to produce low-cost photonic heterostructures
UV Photosensing Characteristics of Nanowire-Based GaN/AlN Superlattices
We have characterized the photodetection capabilities of single GaN nanowires
incorporating 20 periods of AlN/GaN:Ge axial heterostructures enveloped in an
AlN shell. Transmission electron microscopy confirms the absence of an
additional GaN shell around the heterostructures. In the absence of a surface
conduction channel, the incorporation of the heterostructure leads to a
decrease of the dark current and an increase of the photosensitivity. A
significant dispersion in the magnitude of dark currents for different single
nanowires is attributed to the coalescence of nanowires with displaced
nanodisks, reducing the effective length of the heterostructure. A larger
number of active nanodisks and AlN barriers in the current path results in
lower dark current and higher photosensitivity, and improves the sensitivity of
the nanowire to variations in the illumination intensity (improved linearity).
Additionally, we observe a persistence of the photocurrent, which is attributed
to a change of the resistance of the overall structure, particularly the GaN
stem and cap sections. In consequence, the time response is rather independent
of the dark current.Comment: This document is the unedited Author's version of a Submitted Work
that was subsequently accepted for publication in Nano Letters (2016),
copyright (C) American Chemical Society after peer review. To access the
final edited and published work see
http://dx.doi.org/10.1021/acs.nanolett.6b0080
Asymmetrical Plasmon Distribution in Hybrid AuAg Hollow/Solid Coded Nanotubes
Metal nanotubes; Nanotubes; NanowiresNanotubos metálicos; Nanotubos; NanocablesNanotubs metàl·lics; Nanotubs; NanofilsMorphological control at the nanoscale paves the way to fabricate nanostructures with desired plasmonic properties. In this study, we discuss the nanoengineering of plasmon resonances in 1D hollow nanostructures of two different AuAg nanotubes, including completely hollow nanotubes and hybrid nanotubes with solid Ag and hollow AuAg segments. Spatially resolved plasmon mapping by electron energy loss spectroscopy (EELS) revealed the presence of high order resonator-like modes and localized surface plasmon resonance (LSPR) modes in both nanotubes. The experimental findings accurately correlated with the boundary element method (BEM) simulations. Both experiments and simulations revealed that the plasmon resonances are intensely present inside the nanotubes due to plasmon hybridization. Based on the experimental and simulated results, we show that the novel hybrid AuAg nanotubes possess two significant coexisting features: (i) LSPRs are distinctively generated from the hollow and solid parts of the hybrid AuAg nanotube, which creates a way to control a broad range of plasmon resonances with one single nanostructure, and (ii) the periodicity of the high-order modes are disrupted due to the plasmon hybridization by the interaction of solid and hollow parts, resulting in an asymmetrical plasmon distribution in 1D nanostructures. The asymmetry could be modulated/engineered to control the coded plasmonic nanotubes.ICN2 acknowledges funding from the Generalitat de Catalunya 2021SGR00457. This study was supported by MCIN with funding from the European Union NextGenerationEU (PRTR-C17.I1) and the Generalitat de Catalunya. This research is part of the CSIC program for the Spanish Recovery, Transformation and Resilience Plan which is funded by the Recovery and Resilience Facility of the European Union and was established by Regulation (EU) 2020/2094. The authors are thankful for the support from the project NANOGEN (PID2020-116093RB-C43) which was funded by MCIN/AEI/10.13039/501100011033/, “ERDF A way of making Europe”, and the European Union. ICN2 is supported by the Severo Ochoa program at the Spanish MCIN/AEI (grant no. CEX2021-001214-S) and is funded by the CERCA Programme/Generalitat de Catalunya. R.A. acknowledges support from the Spanish MCIN (PID2019-104739GB-100/AEI/10.13039/501100011033), the Government of Aragon (project DGA E13-20R (FEDER, EU)), and the EU H2020 “ESTEEM3” (grant no. 823717). NGB and VP acknowledge financial support from the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU) (RTI2018-099965-B-I00, AEI/FEDER, UE)
- …