2,768 research outputs found

    Electronic Structure and Magnetic Exchange Coupling in Ferromagnetic Full Heusler Alloys

    Full text link
    Density-functional studies of the electronic structures and exchange interaction parameters have been performed for a series of ferromagnetic full Heusler alloys of general formula Co2_2MnZ (Z = Ga, Si, Ge, Sn), Rh2_2MnZ (Z = Ge, Sn, Pb), Ni2_2MnSn, Cu2_2MnSn and Pd2_2MnSn, and the connection between the electronic spectra and the magnetic interactions have been studied. Different mechanisms contributing to the exchange coupling are revealed. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique.Comment: 9 figures, 6 table

    Role of covalent Fe-As bonding in the magnetic moment formation and exchange mechanisms in iron-pnictide superconductors

    Get PDF
    The electronic origin of the huge magnetostructural effect in layered Fe-As compounds is elucidated using LiFeAs as a prototype. The crucial feature of these materials is the strong covalent bonding between Fe and As, which tends to suppress the exchange splitting. The bonding-antibonding splitting is very sensitive to the distance between Fe and As nuclei. We argue that the fragile interplay between bonding and magnetism is universal for this family of compounds. The exchange interaction is analyzed in real space, along with its correlation with covalency and doping. The range of interaction and itinerancy increase as the Fe-As distance is decreased. Superexchange makes a large antiferromagnetic contribution to the nearest-neighbor coupling, which develops large anisotropy when the local moment is not too small. This anisotropy is very sensitive to doping.Comment: 4+ pages, 4 color eps files; revised version accepted in Phys. Rev.
    corecore