205 research outputs found

    Necklace-ring vector solitons

    Get PDF
    We introduce novel classes of optical vector solitons that consist of incoherently coupled self-trapped “necklace” beams carrying zero, integer, and even fractional angular momentum. Because of the stabilizing mutual attraction between the components, such stationary localized structures exhibit quasistable propagation for much larger distances than the corresponding scalar vortex solitons and expanding scalar necklace beams

    Lattice topology and spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays

    Full text link
    We analyze spontaneous parametric down-conversion in various experimentally feasible 1D quadratic nonlinear waveguide arrays, with emphasis on the relationship between the lattice's topological invariants and the biphoton correlations. Nontrivial topology results in a nontrivial "winding" of the array's Bloch waves, which introduces additional selection rules for the generation of biphotons. These selection rules are in addition to, and independent of existing control using the pump beam's spatial profile and phase matching conditions. In finite lattices, nontrivial topology produces single photon edge modes, resulting in "hybrid" biphoton edge modes, with one photon localized at the edge and the other propagating into the bulk. When the single photon band gap is sufficiently large, these hybrid biphoton modes reside in a band gap of the bulk biphoton Bloch wave spectrum. Numerical simulations support our analytical results.Comment: 11 pages, 12 figure

    Azimuthons: spatially modulated vortex solitons

    No full text
    We introduce a novel class of spatially localized self-trapped ringlike singular optical beams in nonlinear media, the so-called azimuthons, which appear due to a continuous azimuthal deformation of vortex solitons.We demonstrate that the azimuthons are characterized by two independent integer indices, the topological charge m and the number N of the intensity peaks along the ring. Each soliton family includes azimuthons with negative, positive, and zero angular velocity

    Self-induced mode transformation in nonlocal nonlinear media

    Get PDF
    We report on the first experimental observation of self-induced optical mode transformations in nonlocal nonlinear media. We show that the quadrupole Hermite-Gaussian mode experiences complex nonlinear dynamics in a nematic liquid crystal, including powe

    Interband resonant transitions in two-dimensional hexagonal lattices: Rabi oscillations, Zener tunnelling, and tunnelling of phase dislocations

    No full text
    We study, analytically and numerically, the dynamics of interband transitions in two-dimensional hexagonal periodic photonic lattices. We develop an analytical approach employing the Bragg resonances of different types and derive the effective multi-level models of the Landau-Zener-Majorana type. For two-dimensional periodic potentials without a tilt, we demonstrate the possibility of the Rabi oscillations between the resonant Fourier amplitudes. In a biased lattice, i.e., for a two-dimensional periodic potential with an additional linear tilt, we identify three basic types of the interband transitions or Zener tunnelling. First, this is a quasi-one-dimensional tunnelling that involves only two Bloch bands and occurs when the Bloch index crosses the Bragg planes away from one of the high-symmetry points. In contrast, at the high-symmetry points (i.e., at the M and Γ points), the Zener tunnelling is essentially two-dimensional, and it involves either three or six Bloch bands being described by the corresponding multi-level Landau-Zener-Majorana systems. We verify our analytical results by numerical simulations and observe an excellent agreement. Finally, we show that phase dislocations, or optical vortices, can tunnel between the spectral bands preserving their topological charge. Our theory describes the propagation of light beams in fabricated or opticallyinduced two-dimensional photonic lattices, but it can also be applied to the physics of cold atoms and Bose-Einstein condensates tunnelling in tilted two-dimensional optical potentials and other types of resonant wave propagation in periodic media

    Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment

    Get PDF
    We develop a theoretical approach for describing the optical trapping and manipulation of carbon nanoclusters in air with a dual-vortex optical trap, as realized recently in experiment [V. Shvedov et al., Opt. Express 17, 5743 (2009)]. We calculate both longitudinal and transverse photophoretic forces acting on a spherical absorbing particle, and then compare our theoretical predictions with the experimental data

    Stable rotating dipole solitons in nonlocal optical media

    Get PDF
    We reveal that nonlocality can provide a simple physical mechanism for stabilization of multi-hump optical solitons, and present the first example of stable rotating dipole solitons and soliton spiraling, known to be unstable in all types of realistic nonlinear media with local response.Comment: 3 pages, 3 figure
    corecore