262 research outputs found

    Optical birefringence changes in myelinated and unmyelinated nerves:A comparative study

    Get PDF
    The measurement of birefringence variations related to nerve activity is a promising label-free technique for sensing compound neural action potentials (CNAPs). While widely applied in crustaceans, little is known about its efficiency on mammal peripheral nerves. In this work, birefringence recordings to detect CNAPs, and Stokes parameters measurements were performed in rat and lobster nerves. While single-trial detection of nerve activity in crustaceans was achieved successfully, no optical signal was detected in rats, even after extensive signal filtering and averaging. The Stokes parameters showed that a high degree of polarization of light is maintained in lobster sample, whereas an almost complete light depolarization occurs in rat nerve. Our results indicate that depolarization itself is not sufficient to explain the absence of birefringence signals in rats. We hypothesize that this absence comes from the myelin sheets, which constraint the birefringence changes to only take place at the nodes of Ranvier

    Vagus nerve electroneurogram-based detection of acute kainic acid induced seizures

    Get PDF
    Seizures produce autonomic symptoms, mainly sympathetic but also parasympathetic in origin. Within this context, the vagus nerve is a key player as it carries information from the different organs to the brain and vice versa. Hence, exploiting vagal neural traffic for seizure detection might be a promising tool to improve the efficacy of closed-loop Vagus Nerve Stimulation. This study developed a VENG detection algorithm that effectively detects seizures by emphasizing the loss of spontaneous rhythmicity associated with respiration in acute intrahippocampal Kainic Acid rat model. Among 20 induced seizures in six anesthetized rats, 13 were detected (sensitivity: 65%, accuracy: 92.86%), with a mean VENG-detection delay of 25.3 ± 13.5 s after EEG-based seizure onset. Despite variations in detection parameters, 7 out of 20 seizures exhibited no ictal VENG modifications and remained undetected. Statistical analysis highlighted a significant difference in Delta, Theta and Beta band evolution between detected and undetected seizures, in addition to variations in the magnitude of HR changes. Binomial logistic regression analysis confirmed that an increase in delta and theta band activity was associated with a decreased likelihood of seizure detection. This results suggest the possibility of distinct seizure spreading patterns between the two groups which may results in differential activation of the autonomic central network. Despite notable progress, limitations, particularly the absence of respiration recording, underscore areas for future exploration and refinement in closed-loop stimulation strategies for epilepsy management. This study constitutes the initial phase of a longitudinal investigation, which will subsequently involve reproducing these experiments in awake conditions with spontaneous recurrent seizures

    New strategies of acquisition and processing of encephalographic biopotentials

    No full text
    Electroencephalography is a medical diagnosis technique. It consists in measuring the biopotentials produced by the upper layers of the brain at various standardized places on the skull.Since the biopotentials produced by the upper parts of the brain have an amplitude of about one microvolt, the measurements performed by an EEG are exposed to many risks.Moreover, since the present tendency is measure those signals over periods of several hours, or even several days, human analysis of the recording becomes extremely long and difficult. The use of signal analysis techniques for the help of paroxysm detection with clinical interest within the electroencephalogram becomes therefore almost essential. However the performance of many automatic detection algorithms becomes significantly degraded by the presence of interference: the quality of the recordings is therefore fundamental. This thesis explores the benefits that electronics and signal processing could bring to electroencephalography, aiming at improving the signal quality and semi-automating the data processing.These two aspects are interdependent because the performance of any semi-automation of the data processing depends on the quality of the acquired signal. Special attention is focused on the interaction between these two goals and attaining the optimal hardware/software pair. This thesis offers an overview of the medical electroencephalographic acquisition chain and also of its possible improvements. The conclusions of this work may be extended to some other cases of biological signal amplification such as the electrocardiogram (ECG) and the electromyogram (EMG). Moreover, such a generalization would be easier, because their signals have a wider amplitude and are therefore more resistant toward interference.Doctorat en sciences appliquéesinfo:eu-repo/semantics/nonPublishe

    Développement d’un convertisseur DC/DC en vue d’alimenter un implant cochléaire. -- - Ingénierie électronique

    No full text
    info:eu-repo/semantics/nonPublishe
    corecore