2 research outputs found

    Effects of Polyamino Acids and Polyelectrolytes on Amyloid β Fibril Formation

    No full text
    The fibril formation of the neurodegenerative peptide amyloid β (Aβ42) is sensitive to solution conditions, and several proteins and peptides have been found to retard the process. Aβ42 fibril formation was followed with ThT fluorescence in the presence of polyamino acids (poly-glutamic acid, poly-lysine, and poly-threonine) and other polymers (poly­(acrylic acid), poly­(ethylenimine), and poly­(diallyldimethylammonium chloride). An accelerating effect on the Aβ42 aggregation process is observed from all positively charged polymers, while no effect is seen from the negative or neutral polymers. The accelerating effect is dependent on the concentration of positive polymer in a highly reproducible manner. Acceleration is observed from a 1:500 polymer to Aβ42 weight ratio and up. Polyamino acids and the other polymers exert quantitatively the same effect at the same concentrations based on weight. Fibrils are formed in all cases as verified by transmission electron microscopy. The concentrations of polymers required for acceleration are too low to affect the Aβ42 aggregation process through increased ionic strength or molecular crowding effects. Instead, the acceleration seems to arise from the locally increased Aβ42 concentration near the polymers, which favors association and affects the electrostatic environment of the peptide

    Charge Dependent Retardation of Amyloid β Aggregation by Hydrophilic Proteins

    No full text
    The aggregation of amyloid β peptides (Aβ) into amyloid fibrils is implicated in the pathology of Alzheimer’s disease. In light of the increasing number of proteins reported to retard Aβ fibril formation, we investigated the influence of small hydrophilic model proteins of different charge on Aβ aggregation kinetics and their interaction with Aβ. We followed the amyloid fibril formation of Aβ40 and Aβ42 using thioflavin T fluorescence in the presence of six charge variants of calbindin D<sub>9k</sub> and single-chain monellin. The formation of fibrils was verified with transmission electron microscopy. We observe retardation of the aggregation process from proteins with net charge +8, +2, −2, and −4, whereas no effect is observed for proteins with net charge of −6 and −8. The single-chain monellin mutant with the highest net charge, scMN+8, has the largest retarding effect on the amyloid fibril formation process, which is noticeably delayed at as low as a 0.01:1 scMN+8 to Aβ40 molar ratio. scMN+8 is also the mutant with the fastest association to Aβ40 as detected by surface plasmon resonance, although all retarding variants of calbindin D<sub>9k</sub> and single-chain monellin bind to Aβ40
    corecore