133 research outputs found
Service Allocation in a Mobile Fog Infrastructure under Availability and QoS Constraints
The next generation of mobile networks, namely 5G, and the Internet of Things
(IoT) have brought a large number of delay sensitive services. In this context
Cloud services are migrating to the edge of the networks to reduce latency. The
notion of Fog computing, where the edge plays an active role in the execution
of services, comes to meet the need for the stringent requirements. Thus, it
becomes of a high importance to elegantly formulate and optimize this problem
of mapping demand to supply. This work does exactly that, taking into account
two key aspects of a service allocation problem in the Fog, namely modeling
cost of executing a given set of services, and the randomness of resources
availability, which may come from pre-existing load or server mobility. We
introduce an integer optimization formulation to minimize the total cost under
a guarantee of service execution despite the uncertainty of resources
availability.Comment: 5 pages, 5 figure
Network-Level Performance Evaluation of a Two-Relay Cooperative Random Access Wireless System
In wireless networks relay nodes can be used to assist the users'
transmissions to reach their destination. Work on relay cooperation, from a
physical layer perspective, has up to now yielded well-known results. This
paper takes a different stance focusing on network-level cooperation. Extending
previous results for a single relay, we investigate here the benefits from the
deployment of a second one. We assume that the two relays do not generate
packets of their own and the system employs random access to the medium; we
further consider slotted time and that the users have saturated queues. We
obtain analytical expressions for the arrival and service rates of the queues
of the two relays and the stability conditions. We investigate a model of the
system, in which the users are divided into clusters, each being served by one
relay, and show its advantages in terms of aggregate and throughput per user.
We quantify the above, analytically for the case of the collision channel and
through simulations for the case of Multi-Packet Reception (MPR), and we
provide insight on when the deployment of a second relay in the system can
yield significant advantages.Comment: Submitted for journal publicatio
Optimization of Free Space Optical Wireless Network for Cellular Backhauling
With densification of nodes in cellular networks, free space optic (FSO)
connections are becoming an appealing low cost and high rate alternative to
copper and fiber as the backhaul solution for wireless communication systems.
To ensure a reliable cellular backhaul, provisions for redundant, disjoint
paths between the nodes must be made in the design phase. This paper aims at
finding a cost-effective solution to upgrade the cellular backhaul with
pre-deployed optical fibers using FSO links and mirror components. Since the
quality of the FSO links depends on several factors, such as transmission
distance, power, and weather conditions, we adopt an elaborate formulation to
calculate link reliability. We present a novel integer linear programming model
to approach optimal FSO backhaul design, guaranteeing -disjoint paths
connecting each node pair. Next, we derive a column generation method to a
path-oriented mathematical formulation. Applying the method in a sequential
manner enables high computational scalability. We use realistic scenarios to
demonstrate our approaches efficiently provide optimal or near-optimal
solutions, and thereby allow for accurately dealing with the trade-off between
cost and reliability
- …