6 research outputs found

    Rh-Catalyzed Intermolecular Reactions of Cyclic α-Diazocarbonyl Compounds with Selectivity over Tertiary C–H Bond Migration

    No full text
    Intermolecular Rh-catalyzed reactions of cyclic α-diazocarbonyl compounds with chemoselectivity over β-hydride elimination are described. These methods represent the first general intermolecular reactions of Rh-carbenoids that are selective over tertiary β-C–H bond migration. Successful transformations include cyclopropanation, cyclopropenation, and various X–H insertion reactions with a broad scope of substrates. We propose that the intermolecular approach of substrates to carbenes from acyclic diazo precursors may be relatively slow due to a steric interaction with the ester function, which is perpendicular to the π-system of the carbene. For carbenes derived from five- and six-membered cyclic α-diazocarbonyls, it is proposed that the carbene is constrained to be more conjugated with the carbonyl, thereby relieving the steric interaction for intermolecular reactions, and accelerating the rate of intermolecular reactivity relative to intramolecular β-hydride migration. However, attempts to use α-diazo-β-ethylcaprolactone in intermolecular cyclopropanation with styrene were unsuccessful. It is proposed that the conformational flexibility of the seven-membered ring allows the carbonyl to be oriented perpendicular to Rh-carbene. The significant intermolecular interaction between the carbonyl and approaching substrate is in agreement with the poor ability of α-diazo-β-ethylcaprolactone to participate in intermolecular cyclopropanation reactions. DFT calculations provide support for the mechanistic proposals that are described

    Rh-Catalyzed Intermolecular Reactions of Cyclic α-Diazocarbonyl Compounds with Selectivity over Tertiary C–H Bond Migration

    No full text
    Intermolecular Rh-catalyzed reactions of cyclic α-diazocarbonyl compounds with chemoselectivity over β-hydride elimination are described. These methods represent the first general intermolecular reactions of Rh-carbenoids that are selective over tertiary β-C–H bond migration. Successful transformations include cyclopropanation, cyclopropenation, and various X–H insertion reactions with a broad scope of substrates. We propose that the intermolecular approach of substrates to carbenes from acyclic diazo precursors may be relatively slow due to a steric interaction with the ester function, which is perpendicular to the π-system of the carbene. For carbenes derived from five- and six-membered cyclic α-diazocarbonyls, it is proposed that the carbene is constrained to be more conjugated with the carbonyl, thereby relieving the steric interaction for intermolecular reactions, and accelerating the rate of intermolecular reactivity relative to intramolecular β-hydride migration. However, attempts to use α-diazo-β-ethylcaprolactone in intermolecular cyclopropanation with styrene were unsuccessful. It is proposed that the conformational flexibility of the seven-membered ring allows the carbonyl to be oriented perpendicular to Rh-carbene. The significant intermolecular interaction between the carbonyl and approaching substrate is in agreement with the poor ability of α-diazo-β-ethylcaprolactone to participate in intermolecular cyclopropanation reactions. DFT calculations provide support for the mechanistic proposals that are described

    Rh-Catalyzed Intermolecular Reactions of Cyclic α-Diazocarbonyl Compounds with Selectivity over Tertiary C–H Bond Migration

    No full text
    Intermolecular Rh-catalyzed reactions of cyclic α-diazocarbonyl compounds with chemoselectivity over β-hydride elimination are described. These methods represent the first general intermolecular reactions of Rh-carbenoids that are selective over tertiary β-C–H bond migration. Successful transformations include cyclopropanation, cyclopropenation, and various X–H insertion reactions with a broad scope of substrates. We propose that the intermolecular approach of substrates to carbenes from acyclic diazo precursors may be relatively slow due to a steric interaction with the ester function, which is perpendicular to the π-system of the carbene. For carbenes derived from five- and six-membered cyclic α-diazocarbonyls, it is proposed that the carbene is constrained to be more conjugated with the carbonyl, thereby relieving the steric interaction for intermolecular reactions, and accelerating the rate of intermolecular reactivity relative to intramolecular β-hydride migration. However, attempts to use α-diazo-β-ethylcaprolactone in intermolecular cyclopropanation with styrene were unsuccessful. It is proposed that the conformational flexibility of the seven-membered ring allows the carbonyl to be oriented perpendicular to Rh-carbene. The significant intermolecular interaction between the carbonyl and approaching substrate is in agreement with the poor ability of α-diazo-β-ethylcaprolactone to participate in intermolecular cyclopropanation reactions. DFT calculations provide support for the mechanistic proposals that are described

    Rh-Catalyzed Intermolecular Reactions of Cyclic α-Diazocarbonyl Compounds with Selectivity over Tertiary C–H Bond Migration

    No full text
    Intermolecular Rh-catalyzed reactions of cyclic α-diazocarbonyl compounds with chemoselectivity over β-hydride elimination are described. These methods represent the first general intermolecular reactions of Rh-carbenoids that are selective over tertiary β-C–H bond migration. Successful transformations include cyclopropanation, cyclopropenation, and various X–H insertion reactions with a broad scope of substrates. We propose that the intermolecular approach of substrates to carbenes from acyclic diazo precursors may be relatively slow due to a steric interaction with the ester function, which is perpendicular to the π-system of the carbene. For carbenes derived from five- and six-membered cyclic α-diazocarbonyls, it is proposed that the carbene is constrained to be more conjugated with the carbonyl, thereby relieving the steric interaction for intermolecular reactions, and accelerating the rate of intermolecular reactivity relative to intramolecular β-hydride migration. However, attempts to use α-diazo-β-ethylcaprolactone in intermolecular cyclopropanation with styrene were unsuccessful. It is proposed that the conformational flexibility of the seven-membered ring allows the carbonyl to be oriented perpendicular to Rh-carbene. The significant intermolecular interaction between the carbonyl and approaching substrate is in agreement with the poor ability of α-diazo-β-ethylcaprolactone to participate in intermolecular cyclopropanation reactions. DFT calculations provide support for the mechanistic proposals that are described

    Rh-Catalyzed Intermolecular Reactions of Cyclic α-Diazocarbonyl Compounds with Selectivity over Tertiary C–H Bond Migration

    No full text
    Intermolecular Rh-catalyzed reactions of cyclic α-diazocarbonyl compounds with chemoselectivity over β-hydride elimination are described. These methods represent the first general intermolecular reactions of Rh-carbenoids that are selective over tertiary β-C–H bond migration. Successful transformations include cyclopropanation, cyclopropenation, and various X–H insertion reactions with a broad scope of substrates. We propose that the intermolecular approach of substrates to carbenes from acyclic diazo precursors may be relatively slow due to a steric interaction with the ester function, which is perpendicular to the π-system of the carbene. For carbenes derived from five- and six-membered cyclic α-diazocarbonyls, it is proposed that the carbene is constrained to be more conjugated with the carbonyl, thereby relieving the steric interaction for intermolecular reactions, and accelerating the rate of intermolecular reactivity relative to intramolecular β-hydride migration. However, attempts to use α-diazo-β-ethylcaprolactone in intermolecular cyclopropanation with styrene were unsuccessful. It is proposed that the conformational flexibility of the seven-membered ring allows the carbonyl to be oriented perpendicular to Rh-carbene. The significant intermolecular interaction between the carbonyl and approaching substrate is in agreement with the poor ability of α-diazo-β-ethylcaprolactone to participate in intermolecular cyclopropanation reactions. DFT calculations provide support for the mechanistic proposals that are described

    Palladium-Catalyzed <i>N</i>‑Arylation of Cyclopropylamines

    No full text
    A general method has been developed for the previously challenging arylation of cyclopropyl­amine and <i>N</i>-arylcyclo­propyl­amines. Highly active, air-stable, and commercially available R-allylpalladium precatalysts provide access to a wide range of (hetero)­arylated cyclo­propyl­anilines in high yields. Precatalysts [(<i>t</i>BuBrettPhos)­Pd­(allyl)]­OTf and [(BrettPhos)­Pd­(crotyl)]­OTf, deliver monoarylated products, while (P<i>t</i>Bu<sub>3</sub>)­Pd­(crotyl)Cl is suited for preparing unsymmetrical diarylated products. The developed conditions tolerate a range of functional groups and heterocycles, allowing access to an array of arylated cyclopropylamines, a motif present in prominent drug molecules
    corecore