1,106 research outputs found
Quantum and Classical Glass Transitions in
When performed in the proper low field, low frequency limits, measurements of
the dynamics and the nonlinear susceptibility in the model Ising magnet in
transverse field, , prove the existence
of a spin glass transition for = 0.167 and 0.198. The classical behavior
tracks for the two concentrations, but the behavior in the quantum regime at
large transverse fields differs because of the competing effects of quantum
entanglement and random fields.Comment: 5 pages, 5 figures. Updated figure 3 with corrected calibration
information for thermometr
Leave-one-out prediction error of systolic arterial pressure time series under paced breathing
In this paper we show that different physiological states and pathological
conditions may be characterized in terms of predictability of time series
signals from the underlying biological system. In particular we consider
systolic arterial pressure time series from healthy subjects and Chronic Heart
Failure patients, undergoing paced respiration. We model time series by the
regularized least squares approach and quantify predictability by the
leave-one-out error. We find that the entrainment mechanism connected to paced
breath, that renders the arterial blood pressure signal more regular, thus more
predictable, is less effective in patients, and this effect correlates with the
seriousness of the heart failure. The leave-one-out error separates controls
from patients and, when all orders of nonlinearity are taken into account,
alive patients from patients for which cardiac death occurred
A comparative study of Gaussian Graphical Model approaches for genomic data
The inference of networks of dependencies by Gaussian Graphical models on
high-throughput data is an open issue in modern molecular biology. In this
paper we provide a comparative study of three methods to obtain small sample
and high dimension estimates of partial correlation coefficients: the
Moore-Penrose pseudoinverse (PINV), residual correlation (RCM) and
covariance-regularized method . We first compare them on simulated
datasets and we find that PINV is less stable in terms of AUC performance when
the number of variables changes. The two regularized methods have comparable
performances but is much faster than RCM. Finally, we present the
results of an application of for the inference of a gene network
for isoprenoid biosynthesis pathways in Arabidopsis thaliana.Comment: 7 pages, 1 figure, RevTex4, version to appear in the proceedings of
1st International Workshop on Pattern Recognition, Proteomics, Structural
Biology and Bioinformatics: PR PS BB 2011, Ravenna, Italy, 13 September 201
Dynamic rotor mode in antiferromagnetic nanoparticles
We present experimental, numerical, and theoretical evidence for a new mode
of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering
experiments on 8 nm particles of hematite display a loss of diffraction
intensity with temperature, the intensity vanishing around 150 K. However, the
signal from inelastic neutron scattering remains above that temperature,
indicating a magnetic system in constant motion. In addition, the precession
frequency of the inelastic magnetic signal shows an increase above 100 K.
Numerical Langevin simulations of spin dynamics reproduce all measured neutron
data and reveal that thermally activated spin canting gives rise to a new type
of coherent magnetic precession mode. This "rotor" mode can be seen as a
high-temperature version of superparamagnetism and is driven by exchange
interactions between the two magnetic sublattices. The frequency of the rotor
mode behaves in fair agreement with a simple analytical model, based on a high
temperature approximation of the generally accepted Hamiltonian of the system.
The extracted model parameters, as the magnetic interaction and the axial
anisotropy, are in excellent agreement with results from Mossbauer
spectroscopy
Proof Relevant Corecursive Resolution
Resolution lies at the foundation of both logic programming and type class
context reduction in functional languages. Terminating derivations by
resolution have well-defined inductive meaning, whereas some non-terminating
derivations can be understood coinductively. Cycle detection is a popular
method to capture a small subset of such derivations. We show that in fact
cycle detection is a restricted form of coinductive proof, in which the atomic
formula forming the cycle plays the role of coinductive hypothesis.
This paper introduces a heuristic method for obtaining richer coinductive
hypotheses in the form of Horn formulas. Our approach subsumes cycle detection
and gives coinductive meaning to a larger class of derivations. For this
purpose we extend resolution with Horn formula resolvents and corecursive
evidence generation. We illustrate our method on non-terminating type class
resolution problems.Comment: 23 pages, with appendices in FLOPS 201
Vitamin A deficiency: case report
We describe a case of primary vitamin A deficiency presenting with ocular manifestations, treated with 100,000 IU vitamin A oral dose and 5,000 UI vitamin A eyedrops evolving to complete resolution of the ocular findings.Relatamos um caso de deficiência primária de vitamina A com apresentação inicial ocular tratado tópica e sistemicamente com vitamina A 100.000 UI por dia via oral e colírio de 5.000 UI/ml, quatro vezes ao dia. Com o tratamento houve total resolução das manifestações oftalmológicas.Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Departamento de OftalmologiaUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Departamento de PediatriaUNIFESP, EPM, Depto. de OftalmologiaUNIFESP, EPM, Depto. de PediatriaSciEL
Behavioral types in programming languages
A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types
Nyquist method for Wigner-Poisson quantum plasmas
By means of the Nyquist method, we investigate the linear stability of
electrostatic waves in homogeneous equilibria of quantum plasmas described by
the Wigner-Poisson system. We show that, unlike the classical Vlasov-Poisson
system, the Wigner-Poisson case does not necessarily possess a Penrose
functional determining its linear stability properties. The Nyquist method is
then applied to a two-stream distribution, for which we obtain an exact,
necessary and sufficient condition for linear stability, as well as to a
bump-in-tail equilibrium.Comment: 6 figure
Explicit connection actions in multiparty session types
This work extends asynchronous multiparty session types (MPST) with explicit connection actions to support protocols with op- tional and dynamic participants. The actions by which endpoints are connected and disconnected are a key element of real-world protocols that is not treated in existing MPST works. In addition, the use cases motivating explicit connections often require a more relaxed form of mul- tiparty choice: these extensions do not satisfy the conservative restric- tions used to ensure safety in standard syntactic MPST. Instead, we de- velop a modelling-based approach to validate MPST safety and progress for these enriched protocols. We present a toolchain implementation, for distributed programming based on our extended MPST in Java, and a core formalism, demonstrating the soundness of our approach. We discuss key implementation issues related to the proposed extensions: a practi- cal treatment of choice subtyping for MPST progress, and multiparty correlation of dynamic binary connections
Temperature and ac Effects on Charge Transport in Metallic Arrays of Dots
We investigate the effects of finite temperature, dc pulse, and ac drives on
the charge transport in metallic arrays using numerical simulations. For finite
temperatures there is a finite conduction threshold which decreases linearly
with temperature. Additionally we find a quadratic scaling of the
current-voltage curves which is independent of temperature for finite
thresholds. These results are in excellent agreement with recent experiments on
2D metallic dot arrays. We have also investigated the effects of an ac drive as
well as a suddenly applied dc drive. With an ac drive the conduction threshold
decreases for fixed frequency and increasing amplitude and saturates for fixed
amplitude and increasing frequency. For sudden applied dc drives below
threshold we observe a long time power law conduction decay.Comment: 6 pages, 7 postscript figure
- …