4 research outputs found

    UrduFake@FIRE2021: Shared Track on Fake News Identification in Urdu

    Full text link
    This study reports the second shared task named as UrduFake@FIRE2021 on identifying fake news detection in Urdu language. This is a binary classification problem in which the task is to classify a given news article into two classes: (i) real news, or (ii) fake news. In this shared task, 34 teams from 7 different countries (China, Egypt, Israel, India, Mexico, Pakistan, and UAE) registered to participate in the shared task, 18 teams submitted their experimental results and 11 teams submitted their technical reports. The proposed systems were based on various count-based features and used different classifiers as well as neural network architectures. The stochastic gradient descent (SGD) algorithm outperformed other classifiers and achieved 0.679 F-score

    Overview of the Shared Task on Fake News Detection in Urdu at FIRE 2021

    Full text link
    Automatic detection of fake news is a highly important task in the contemporary world. This study reports the 2nd shared task called UrduFake@FIRE2021 on identifying fake news detection in Urdu. The goal of the shared task is to motivate the community to come up with efficient methods for solving this vital problem, particularly for the Urdu language. The task is posed as a binary classification problem to label a given news article as a real or a fake news article. The organizers provide a dataset comprising news in five domains: (i) Health, (ii) Sports, (iii) Showbiz, (iv) Technology, and (v) Business, split into training and testing sets. The training set contains 1300 annotated news articles -- 750 real news, 550 fake news, while the testing set contains 300 news articles -- 200 real, 100 fake news. 34 teams from 7 different countries (China, Egypt, Israel, India, Mexico, Pakistan, and UAE) registered to participate in the UrduFake@FIRE2021 shared task. Out of those, 18 teams submitted their experimental results, and 11 of those submitted their technical reports, which is substantially higher compared to the UrduFake shared task in 2020 when only 6 teams submitted their technical reports. The technical reports submitted by the participants demonstrated different data representation techniques ranging from count-based BoW features to word vector embeddings as well as the use of numerous machine learning algorithms ranging from traditional SVM to various neural network architectures including Transformers such as BERT and RoBERTa. In this year's competition, the best performing system obtained an F1-macro score of 0.679, which is lower than the past year's best result of 0.907 F1-macro. Admittedly, while training sets from the past and the current years overlap to a large extent, the testing set provided this year is completely different

    Overview of Abusive and Threatening Language Detection in Urdu at FIRE 2021

    Full text link
    With the growth of social media platform influence, the effect of their misuse becomes more and more impactful. The importance of automatic detection of threatening and abusive language can not be overestimated. However, most of the existing studies and state-of-the-art methods focus on English as the target language, with limited work on low- and medium-resource languages. In this paper, we present two shared tasks of abusive and threatening language detection for the Urdu language which has more than 170 million speakers worldwide. Both are posed as binary classification tasks where participating systems are required to classify tweets in Urdu into two classes, namely: (i) Abusive and Non-Abusive for the first task, and (ii) Threatening and Non-Threatening for the second. We present two manually annotated datasets containing tweets labelled as (i) Abusive and Non-Abusive, and (ii) Threatening and Non-Threatening. The abusive dataset contains 2400 annotated tweets in the train part and 1100 annotated tweets in the test part. The threatening dataset contains 6000 annotated tweets in the train part and 3950 annotated tweets in the test part. We also provide logistic regression and BERT-based baseline classifiers for both tasks. In this shared task, 21 teams from six countries registered for participation (India, Pakistan, China, Malaysia, United Arab Emirates, and Taiwan), 10 teams submitted their runs for Subtask A, which is Abusive Language Detection and 9 teams submitted their runs for Subtask B, which is Threatening Language detection, and seven teams submitted their technical reports. The best performing system achieved an F1-score value of 0.880 for Subtask A and 0.545 for Subtask B. For both subtasks, m-Bert based transformer model showed the best performance

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
    corecore