9 research outputs found

    Trends in the Adsorption of Oxygen and Li<sub>2</sub>O<sub>2</sub> on Transition-Metal Carbide Surfaces: A Theoretical Study

    No full text
    In this work, we performed fundamental investigations of the adsorption of O2 and Li2O2 molecules on seven transition-metal carbide (TMC) surfaces, which present 3d, 4d, and 5d TM, where TM = Ti, V, Zr, Nb, Mo, Hf, and Ta. We employed density functional theory (DFT) with the semilocal meta-GGA SCAN functional. The oxide layer behaves as a passivation layer on the TiC(111), ZrC(111), α-MoC(001), and Mo2C­(001) systems upon Li2O2 adsorption, but promotes the formation of the Li1O3TM1 layer on the VC(111), NbC(111), MoC(111), and HfC(111) surfaces due to the change in stoichiometry which is caused by the first adsorbed Li2O2 molecule. We showed that with increasing the number of the Li2O2 molecules on the TMC surfaces, the contribution of the TMC surface states turns out to be less important to the adsorption energy of the molecules. After the first layer of Li2O2, it approaches the native crystal values, which occurs faster with the occupation of the TM d-bands. This work can make a contribution in fundamental understanding and development of new, TMC-based, catalytic substrates for alkali-metal batteries

    Efficient Computation of the Hartree–Fock Exchange in Real-Space with Projection Operators

    No full text
    We describe an efficient projection-based real-space implementation of the nonlocal single-determinant exchange operator. Through a matrix representation of the projected operator, we show that this scheme works equally well for both occupied and virtual states. Our scheme reaches a speedup of 2 orders of magnitude and has no significant loss of accuracy compared to an implementation of the full nonlocal single-determinant exchange operator. We find excellent agreement upon comparing Hartree–Fock eigenvalues, dipoles, and polarizabilities of selected molecules calculated using our method to values in the literature. To illustrate the efficiency of this scheme we perform calculations on systems with up to 240 carbon atoms

    Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence

    No full text
    A reconstructive phase transition has been found and studied in ultrashort di- and tripeptide nanostructures, self-assembled from biomolecules of different compositions and origin such as aromatic, aliphatic, linear, and cyclic (linear FF-diphenylalanine, linear LL-dileucine, FFF-triphenylalanine, and cyclic FF-diphenylalanine). The native linear aromatic FF, FFF and aliphatic LL peptide nanoensembles of various shapes (nanotubes and nanospheres) have asymmetric elementary structure and demonstrate nonlinear optical and piezoelectric effects. At elevated temperature, 140–180 °C, these native supramolecular structures (except for native Cyc-FF nanofibers) undergo an irreversible thermally induced transformation via reassembling into a completely new thermodynamically stable phase having nanowire morphology similar to those of amyloid fibrils. This reconstruction process is followed by deep and similar modification at all levels: macroscopic (morphology), molecular, peptide secondary, and electronic structures. However, original Cyc-FF nanofibers preserve their native physical properties. The self-fabricated supramolecular fibrillar ensembles exhibit the FTIR and CD signatures of new antiparallel β-sheet secondary folding with intermolecular hydrogen bonds and centrosymmetric structure. In this phase, the β-sheet nanofibers, irrespective of their native biomolecular origin, do not reveal nonlinear optical and piezoelectric effects, but do exhibit similar profound modification of optoelectronic properties followed by the appearance of visible (blue and green) photoluminescence (PL), which is not observed in the original peptides and their native nanostructures. The observed visible PL effect, ascribed to hydrogen bonds of thermally induced β-sheet secondary structures, has the same physical origin as that of the fluorescence found recently in amyloid fibrils and can be considered to be an optical signature of β-sheet structures in both biological and bioinspired materials. Such PL centers represent a new class of self-assembled dyes and can be used as intrinsic optical labels in biomedical microscopy as well as for a new generation of novel optoelectronic nanomaterials for emerging nanophotonic applications, such as biolasers, biocompatible markers, and integrated optics

    Effect of Interlayer Bonding on Superlubric Sliding of Graphene Contacts: A Machine-Learning Potential Study

    No full text
    Surface defects and their mutual interactions are anticipated to affect the superlubric sliding of incommensurate layered material interfaces. Atomistic understanding of this phenomenon is limited due to the high computational cost of ab initio simulations and the absence of reliable classical force-fields for molecular dynamics simulations of defected systems. To address this, we present a machine-learning potential (MLP) for bilayer defected graphene, utilizing state-of-the-art graph neural networks trained against many-body dispersion corrected density functional theory calculations under iterative configuration space exploration. The developed MLP is utilized to study the impact of interlayer bonding on the friction of bilayer defected graphene interfaces. While a mild effect on the sliding dynamics of aligned graphene interfaces is observed, the friction coefficients of incommensurate graphene interfaces are found to significantly increase due to interlayer bonding, nearly pushing the system out of the superlubric regime. The methodology utilized herein is of general nature and can be adapted to describe other homogeneous and heterogeneous defected layered material interfaces

    Electrostatic Properties of Adsorbed Polar Molecules:  Opposite Behavior of a Single Molecule and a Molecular Monolayer

    No full text
    We compare the electrostatic behavior of a single polar molecule adsorbed on a solid substrate with that of an adsorbed polar monolayer. This is accomplished by comparing first principles calculations obtained within a cluster model and a periodic slab model, using benzene derivatives on the Si(111) surface as a representative test case. We find that the two models offer diametrically opposite descriptions of the surface electrostatic phenomena. Slab electrostatics is dominated by dipole reduction due to intermolecular dipole−dipole interactions that partially depolarize the molecules, with charge migration to the substrate playing a negligible role due to electric field suppression outside the monolayer. Conversely, cluster electrostatics is dominated by dipole enhancement due to charge migration to/from the substrate, with only a small polarization of the molecule. This establishes the important role played by long-range interactions, in addition to local chemical properties, in tailoring surface chemistry via polar molecule adsorption

    Adsorption of Li<sub>2</sub>O<sub>2</sub>, Na<sub>2</sub>O<sub>2</sub>, and NaO<sub>2</sub> on TiC(111) Surface for Metal–Air Rechargeable Batteries: A Theoretical Study

    No full text
    We analyze, with density functional theory calculations, the adsorption energies of Li<sub>2</sub>O<sub>2</sub>, Na<sub>2</sub>O<sub>2</sub>, and NaO<sub>2</sub> on clean and oxygen-passivated TiC (111) surfaces. We show that after deposition of two molecular layers of alkali metal oxides, the initial state of the TiC surface becomes unimportant for the adsorption energy and that all adsorption energies approach their native crystal values. The structure of the adsorbed molecular layers is analyzed and compared with their native oxide crystal structure. Finally, we discuss the similarities and differences of Li peroxide and Na oxides adsorption at the electrode surface

    PFC and Triglyme for Li–Air Batteries: A Molecular Dynamics Study

    No full text
    In this work, we present an all-atom molecular dynamics (MD) study of triglyme and perfluorinated carbons (PFCs) using classical atomistic force fields. Triglyme is a typical solvent used in nonaqueous Li–air battery cells. PFCs were recently reported to increase oxygen availability in such cells. We show that O<sub>2</sub> diffusion in two specific PFC molecules (C<sub>6</sub>F<sub>14</sub> and C<sub>8</sub>F<sub>18</sub>) is significantly faster than in triglyme. Furthermore, by starting with two very different initial configurations for our MD simulation, we demonstrate that C<sub>8</sub>F<sub>18</sub> and triglyme do not mix. The mutual solubility of these molecules is evaluated both theoretically and experimentally, and a qualitative agreement is found. Finally, we show that the solubility of O<sub>2</sub> in C<sub>8</sub>F<sub>18</sub> is considerably higher than in triglyme. The significance of these results to Li–air batteries is discussed

    Proton-Transfer-Induced Fluorescence in Self-Assembled Short Peptides

    No full text
    We employ molecular dynamics (MD) and time-dependent density functional theory (TDDFT) to explore the fluorescence of hydrogen-bonded dimer and trimer structures of cyclic FF (Phe-Phe) molecules. We show that in some of these configurations a photon can induce either an intra-molecular proton transfer, or an inter-molecular proton transfer that can occur in the excited S1 and S2 states. This proton transfer, taking place within the hydrogen bond, leads to a significant red-shift that can explain the experimentally observed visible fluorescence in biological and bioinspired peptide nanostructures with a β-sheet biomolecular arrangement. Finally, we also show that such proton transfer is highly sensitive to the geometrical bonding of the dimers and trimers and that it occurs only in specific configurations allowed by the formation of hydrogen bonds

    Collectively Induced Quantum-Confined Stark Effect in Monolayers of Molecules Consisting of Polar Repeating Units

    No full text
    The electronic structure of terpyrimidinethiols is investigated by means of density-functional theory calculations for isolated molecules and monolayers. In the transition from molecule to self-assembled monolayer (SAM), we observe that the band gap is substantially reduced, frontier states increasingly localize on opposite sides of the SAM, and this polarization in several instances is in the direction opposite to the polarization of the overall charge density. This behavior can be analyzed by analogy to inorganic semiconductor quantum-wells, which, as the SAMs studied here, can be regarded as semiperiodic systems. There, similar observations are made under the influence of a, typically external, electric field and are known as the quantum-confined Stark effect. Without any external perturbation, in oligopyrimidine SAMs one encounters an energy gradient that is generated by the dipole moments of the pyrimidine repeat units. It is particularly strong, reaching values of about 1.6 eV/nm, which corresponds to a substantial electric field of 1.6 × 10<sup>7</sup> V/cm. Close-lying σ- and π-states turn out to be a particular complication for a reliable description of the present systems, as their order is influenced not only by the docking groups and bonding to the metal, but also by the chosen computational approach. In the latter context we demonstrate that deliberately picking a hybrid functional allows avoiding pitfalls due to the infamous self-interaction error. Our results show that when aiming to build a monolayer with a specific electronic structure one can not only resort to the traditional technique of modifying the molecular structure of the constituents, but also try to exploit collective electronic effects
    corecore