3,006 research outputs found
Distribution function of persistent current
We introduce a variant of the replica trick within the nonlinear sigma model
that allows calculating the distribution function of the persistent current. In
the diffusive regime, a Gaussian distribution is derived. This result holds in
the presence of local interactions as well. Breakdown of the Gaussian
statistics is predicted for the tails of the distribution function at large
deviations
Diamagnetic response of Aharonov-Bohm rings: Impurity backward scatterings
We report a theoretical calculation on the persistent currents of disordered
normal-metal rings. It is shown that the diamagnetic responses of the rings in
the vicinity of the zero magnetic field are attributed to multiple backward
scatterings off the impurities. We observe the transition from the paramagnetic
response to the diamagnetic one as the strength of disorder grows using both
the analytic calculation and the numerical exact diagonalization.Comment: final versio
Influence of trigonal warping on interference effects in bilayer graphene
Bilayer graphene (two coupled graphitic monolayers arranged according to Bernal stacking) is a two-dimensional gapless semiconductor with a peculiar electronic spectrum different from the Dirac spectrum in the monolayer material. In particular, the electronic Fermi line in each of its valleys has a strong p -> -p asymmetry due to trigonal warping, which suppresses the weak localization effect. We show that weak localization in bilayer graphene may be present only in devices with pronounced intervalley scattering, and we evaluate the corresponding magnetoresistance
Differential identities for parametric correlation functions in disordered systems
Copyright © 2008 The American Physical Society.We derive a family of differential identities for parametric correlation functions in disordered systems by casting them as first- or second-order Ward identities of an associated matrix model. We show that this approach allows for a systematic classification of such identities, and provides a template for deriving higher-order results. We also reestablish and generalize some identities of this type which had been derived previously using a different method
Coulomb drag at zero temperature
We show that the Coulomb drag effect exhibits saturation at small
temperatures, when calculated to the third order in the interlayer
interactions. The zero-temperature transresistance is inversely proportional to
the third power of the dimensionless sheet conductance. The effect is therefore
the strongest in low mobility samples. This behavior should be contrasted with
the conventional (second order) prediction that the transresistance scales as a
certain power of temperature and is almost mobility-independent. The result
demonstrates that the zero-temperature drag is not an unambiguous signature of
a strongly-coupled state in double-layer systems.Comment: 4 pages, 2 figure
Observation of mesoscopic conductance fluctuations in YBaCuO grain boundary Josephson Junctions
Magneto-fluctuations of the normal resistance R_N have been reproducibly
observed in high critical temp erature superconductor (HTS) grain boundary
junctions, at low temperatures. We attribute them to mesoscopic transport in
narrow channels across the grain boundary line. The Thouless energy appears to
be the relevant energy scale. Our findings have significant implications on
quasiparticle relaxation and coherent transport in HTS grain boundaries.Comment: Revised version, minor changes. 4 pages, 4 figure
Entanglement entropy in one-dimensional disordered interacting system: The role of localization
The properties of the entanglement entropy (EE) in one-dimensional disordered
interacting systems are studied. Anderson localization leaves a clear signature
on the average EE, as it saturates on length scale exceeding the localization
length. This is verified by numerically calculating the EE for an ensemble of
disordered realizations using density matrix renormalization group (DMRG). A
heuristic expression describing the dependence of the EE on the localization
length, which takes into account finite size effects, is proposed. This is used
to extract the localization length as function of the interaction strength. The
localization length dependence on the interaction fits nicely with the
expectations.Comment: 5 pages, 4 figures, accepted for publication in Physical Review
Letter
Mesoscopic oscillations of the conductance of disordered metallic samples as a function of temperature
We show theoretically and experimentally that the conductance of small
disordered samples exhibits random oscillations as a function of temperature.
The amplitude of the oscillations decays as a power law of temperature, and
their characteristic period is of the order of the temperature itself
Nonequilibrium mesoscopic conductance fluctuations
We investigate the amplitude of mesoscopic fluctuations of the differential
conductance of a metallic wire at arbitrary bias voltage V. For non-interacting
electrons, the variance increases with V. The asymptotic large-V
behavior is \sim V/V_c (where eV_c=D/L^2 is the Thouless energy),
in agreement with the earlier prediction by Larkin and Khmelnitskii. We find,
however, that this asymptotics has a very small numerical prefactor and sets in
at very large V/V_c only, which strongly complicates its experimental
observation. This high-voltage behavior is preceded by a crossover regime,
V/V_c \lesssim 30, where the conductance variance increases by a factor \sim 3
as compared to its value in the regime of universal conductance fluctuations
(i.e., at V->0). We further analyze the effect of dephasing due to the
electron-electron scattering on at high voltages. With the Coulomb
interaction taken into account, the amplitude of conductance fluctuations
becomes a non-monotonic function of V. Specifically, drops as 1/V
for voltages V >> gV_c, where g is the dimensionless conductance. In this
regime, the conductance fluctuations are dominated by quantum-coherent regions
of the wire adjacent to the reservoirs.Comment: 14 pages, 4 figures. Fig.2 and one more appendix added, accepted for
publication in PR
Magnetoconductivity of low-dimensional disordered conductors at the onset of the superconducting transition
Magnetoconductivity of the disordered two- and three-dimensional
superconductors is addressed at the onset of superconducting transition. In
this regime transport is dominated by the fluctuation effects and we account
for the interaction corrections coming from the Cooper channel. In contrast to
many previous studies we consider strong magnetic fields and various
temperature regimes, which allow to resolve the existing discrepancies with the
experiments. Specifically, we find saturation of the fluctuations induced
magneto-conductivity for both two- and three-dimensional superconductors at
already moderate magnetic fields and discuss possible dimensional crossover at
the immediate vicinity of the critical temperature. The surprising observation
is that closer to the transition temperature weaker magnetic field provides the
saturation. It is remarkable also that interaction correction to
magnetoconductivity coming from the Cooper channel, and specifically the so
called Maki-Thompson contribution, remains to be important even away from the
critical region.Comment: 4 pages, 1 figur
- …