15 research outputs found
Scientific support for an orbiter middeck experiment on solid surface combustion
The objective is to determine the mechanism of gas-phase flame spread over solid fuel surfaces in the absence of any buoyancy or externally imposed gas-phase flow. Such understanding can be used to improve the fire safety aspects of space travel by providing information that will allow judicious selections of spacecraft materials and environments to be made. The planned experiment consists of measuring the flame spread rate over thermally thin and thermally thick fuels in a closed container in the low-gravity environment of the Space Shuttle. Measurements consist of flame spread rate and shape obtained from two views of the process as recorded on movie film and surface and gas-phase temperatures obtained from fine-wire thermocouples. The temperature measurements along with appropriate modeling provide information about the gas-to-solid heat flux. Environmental parameters to be varied are the oxygen concentration and pressure
Opposed-Flow Flame Spreading in Reduced Gravity
Experimental results obtained in drop towers and in Space Shuttle based experiments coupled with modelling efforts are beginning to provide information that is allowing an understanding to be developed of the physics of opposed-flow flame spread at reduced gravity where the spread rate and flow velocity are comparable and of the role played by radiative and diffusive processes in flame spreading in microgravity. Here we describe one Space Shuttle based experiment on flame spreading in a quiescent environment, the Solid Surface Combustion Experiment, SSCE, one planned microgravity experiment on flame spreading in a radiatively-controlled, forced opposing flow environment, the Diffusive and Radiative Transport in Fires Experiment, DARTFire, modelling efforts to support these experiments, and some results obtained to date
The solid surface combustion experiment aboard the USML-1 mission
AA Experimental results from the five experiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. An experiment was conducted aboard STS-50/USML-1 in the solid Surface Combustion Experiment (SSCE) hardware for flame spread over a thin cellulosic fuel in a quiescent oxidizer of 35% oxygen/65% nitrogen at 1.0 atm. pressure in microgravity. The USML-1 test was the fourth of five planned experiments for thin fuels, one performed during each of five Space Shuttle Orbiter flights. Data that were gathered include gas- and solid-phase temperatures and motion picture flame images. Observations of the flame are described and compared to theoretical predictions from steady and unsteady models that include flame radiation from CO2 and H2O. Experimental results from the five esperiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. The brightness of the flame and the visible soot radiation also increase with increasing spread rate. Steady-state numerical predictions of temperature and spread rate and flame structure trends compare well with experimental results near the flame's leading edge while gradual flame evolution is captured through the unsteady model
Low velocity opposed-flow frame spread in a transport-controlled environment DARTFire
The overall objectives of the DARTFire project are to uncover the underlying physics and increase understanding of the mechanisms that cause flames to propagate over solid fuels against a low velocity of oxidizer flow in a low-gravity environment. Specific objectives are (1) to analyze experimentally observed flame shapes, measured gas-phase field variables, spread rates, radiative characteristics, and solid-phase regression rates for comparison with previously developed model prediction capability that will be continually extended, and (2) to investigate the transition from ignition to either flame propagation or extinction in order to determine the characteristics of those environments that lead to flame evolution. To meet the objectives, a series of sounding rocket experiments has been designed to exercise several of the dimensional, controllable variables that affect the flame spread process over PMMA in microgravity, i.e., the opposing flow velocity (1-20 cm/s), the external radiant flux directed to the fuel surface (0-2 W/cm(exp 2)), and the oxygen concentration of the environment (35-70%). Because radiative heat transfer is critical to these microgravity flame spread experiments, radiant heating is imposed, and radiant heat loss will be measured. These are the first attempts at such an experimental control and measurement in microgravity. Other firsts associated with the experiment are (1) the control of the low velocity, opposed flow, which is of the same order as diffusive velocities and Stefan flows; (2) state-of-the-art quantitative flame imaging for species-specific emissions (both infrared and ultraviolet) in addition to novel intensified array imaging to obtain a color image of the very dim, low-gravity flames
Solid surface combustion experiment flame spread in a quiescent, microgravity environment implications of spread rate and flame structure
A unique environment in which flame spreading, a phenomenon of fundamental, scientific interest, has importance to fire safety is that of spacecraft in which the gravitational acceleration is low compared with that of the Earth, i.e., microgravity. Experiments aboard eight Space Shuttle missions between October 1990 and February 1995 were conducted using the Solid Surface Combustion Experiment (SSCE) payload apparatus in an effort to determine the mechanisms of gas-phase flame spread over solid fuel surfaces in the absence of any buoyancy induced or externally imposed oxidizer flow. The overall SSCE effort began in December of 1984. The SSCE apparatus consists of a sealed container, approximately 0.039 cu m, that is filled with a specified O2/N2 mixture at a prescribed pressure. Five of the experiments used a thin cellulosic fuel, ashless filter paper, 3 cm wide x 10 cm long, 0.00825 cm half-thickness, ignited in five different ambient conditions. Three of the experiments, the most recent, used thick polymethylmethacrylate (PMMA) samples 0.635 cm wide x 2 cm long, 0.32 cm half-thickness. Three experiments, STS 41, 40 and 43, were designed to evaluate the effect of ambient pressure on flame spread over the thin cellulosic fuel while flights STS 50 and 47 were at the same pressure as two of the earlier flights but at a lower oxygen concentration in order to evaluate the effect of ambient oxygen level on the flame spread process at microgravity. For the PMMA flights, two experiments, STS 54 and 63, were at the same pressure but different oxygen concentrations while STS 64 was at the same oxygen concentration as STS 63 but at a higher pressure. Two orthogonal views of the experiments were recorded on 16 mm cine-cameras operating at 24 frames/s. In addition to filmed images of the side view of the flames and surface view of the burning samples, solid- and gas-phase temperatures were recorded using thermocouples. The experiment is battery powered and follows an automated sequence upon activation by the Shuttle Crew. In this study we separate the SSCE data into two groups according to the fuel type: (1) thin cellulose; and (2) thick PMMA. The experimental spread rates are compared with prediction from a number of models in an effort to uncover the important physics that characterize microgravity flame spread. Both steady and unsteady solutions are employed to explore the flame evolution, especially for thick fuels. Finally, the flame structure in downward spread is compared with the microgravity flame structure and modeling results to delineate the difference between the two configurations and the influence of normal gravity
Refining Inductive Types
Dependently typed programming languages allow sophisticated properties of
data to be expressed within the type system. Of particular use in dependently
typed programming are indexed types that refine data by computationally useful
information. For example, the N-indexed type of vectors refines lists by their
lengths. Other data types may be refined in similar ways, but programmers must
produce purpose-specific refinements on an ad hoc basis, developers must
anticipate which refinements to include in libraries, and implementations must
often store redundant information about data and their refinements. In this
paper we show how to generically derive inductive characterisations of
refinements of inductive types, and argue that these characterisations can
alleviate some of the aforementioned difficulties associated with ad hoc
refinements. Our characterisations also ensure that standard techniques for
programming with and reasoning about inductive types are applicable to
refinements, and that refinements can themselves be further refined
水面に浮遊した燃料の液面燃焼 : 第2報, 水の沸騰の開始
An experimental investigation of the boilover phenomenon for a liquid burning above a water sublayer indicates that boilover occurs when the boiling point temperature of a pure fuel is more than that of the water. In this situation, the fuel temperature near the fuel-water interface is somewhat limited by the presence of the boiling water and cannot reach the fuel boiling point. The boilover behavior of multicomponent fuels is similar to that of pure fuels. The temperature measurements at the onset of boilover for multicomponent fuels show that a fixed amount of superheat, 10K, exists in the water sublayer near the fuel-water interface. Onset time of water boiling was measured and compared with an estimated value that was derived by a simple analysis of unsteady conductive heat transfer