98 research outputs found

    A smoothing spline algorithm to interpolate and predict the eigenvalues of matrices extracted from the sequence of preconditioned banded symmetric Toeplitz matrices

    Get PDF
    Understanding the eigenvalue distribution of sequence Toeplitz matrices has advanced significantly in recent years. Notable contributors include Bogoya, Grudsky, Böttcher, and Maximenko, who have derived precise asymptotic expansions for these eigenvalues under certain conditions related to the generating function as the matrix size increases. Building on this foundation, the Stefano Serra-Capizzano conjectured that, under certain assumptions about Ω \Omega and Φ \Phi , a similar expansion may hold for the eigenvalues of a sequence of preconditioned Toeplitz matrices Tn1(Φ)Tn(Ω) T_{n}^{-1}(\Phi) T_n(\Omega) , given a monotonic ratio r=Ω/Φ r = \Omega/\Phi . In contrast to current eigenvalue solvers, this work presents a novel method for efficiently calculating the eigenvalues of a sequence of large preconditioned banded symmetric Toeplitz matrices (PBST). Our algorithm uses a higher-order spline fitting extrapolation technique to gather spectral data from a smaller sequence of PBST matrices in order to forecast the spectrum of bigger matrices

    Facile Synthesis of Low-Cost Copper-Silver and Cobalt-Silver Alloy Nanoparticles on Reduced Graphene Oxide as Efficient Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media

    Get PDF
    Copper-silver and cobalt-silver alloy nanoparticles deposited on reduced graphene oxide (CuAg/rGO and CoAg/rGO) were synthesized and examined as electrocatalysts for oxygen reduction reaction (ORR) and hydrogen peroxide reduction reaction (HPRR) in alkaline media. Characterization of the prepared samples was done by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction analysis (XRD), and scanning electron microscopy with integrated energy-dispersive X-ray spectroscopy (SEM-EDS). CuAg/rGO and CoAg/rGO nanoparticles diameter ranged from 0.4 to 9.2 nm. The Ag loading was ca. 40 wt.% for both electrocatalysts, with that for Cu and Co being 35 and 17 wt.%, respectively. CoAg/rGO electrocatalyst showed a Tafel slope of 109 mV dec−1, significantly lower than that for CuAg/rGO (184 mV dec−1), suggesting faster ORR kinetics. Additionally, a higher diffusion current density was obtained for CoAg/rGO (−2.63 mA cm−2) than for CuAg/rGO (−1.74 mA cm−2). The average value of the number of electrons transferred during ORR was 2.8 for CuAg/rGO and 3.3 for CoAg/rGO electrocatalyst, further confirming the higher ORR activity of the latter. On the other hand, CuAg/rGO showed higher peak current densities (−3.96 mA cm−2) for HPRR compared to those recorded for CoAg/rGO electrocatalyst (−1.96 mA cm−2)

    Efficient methane dry reforming process with low nickel loading for greenhouse gas mitigation

    Get PDF
    In this study, a series of nickels supported on gamma alumina with a metal dosage ranging from 0.5 to 3 wt.% were prepared and employed as the catalysts. The effect of nickel dosage on material properties, reaction performance, and catalyst deactivation was investigated. At a low dosage, the nickel-free having low metal-support interaction contributed significantly to the total active site. The basicity of the material was enhanced along with the increase in nickel loading. The presence of active metal showed a great impact at the beginning leading to big improvements in feedstock conversion. However, beyond a nickel dosage of 2 wt.%, further additions did not noticeably influence the reaction performance. Regarding catalyst deactivation, different carbon species were observed on catalyst surface, depending on the nickel dosage. Catalysts with less than 2 wt.% nickel exhibited amorphous carbon as the dominant morphology on the spent catalyst. In contrast, catalysts with 2Ni/Al2O3 and 3Ni/Al2O3 compositions showed graphitic carbon as the main side product. These findings provide insights into the relationship between nickel dosage, catalyst properties, and catalytic performance in methane dry reforming. By understanding the effects of nickel loading on material properties and reaction behavior, researchers can optimize catalyst design and develop more efficient and stable catalysts for sustainable syngas production

    Carbon dioxide reforming of methane over modified iron-cobalt alumina catalyst : Role of promoter

    Get PDF
    Cobalt-based catalysts are widely employed in methane dry reforming but tend to deactivate quickly due to coke deposits and metal sintering. To enhance the performance, iron, a cost-effective promoter, is added, improving cobalt's metal dispersibility, reducibility, and basicity on the support. This addition accelerates carbon gasification, effectively inhibiting coke deposition. Methods: A series of iron-doped cobalt alumina MFe-5Co/Al2O3 (M= 0, 0.4, 0.8, 1, 2 wt.%) were prepared via simple incipient-wetness impregnation. The catalysts were thoroughly characterized via modern techniques including BET, XRD, H2-TPR, CO2-TPD. Significant findings: The addition of iron had a minimal impact on the properties of γ-Al2O3, but it significantly affected the dispersibility of cobalt. At an optimal dosage of 0.8 wt.%, there was a notable decrease of 29.44% in Co3O4 particle size. However, excessive iron loading induced agglomeration of Co3O4, which was reversible. The presence of iron also resulted in a decrease in the reduction temperature of Co3O4. The material's basicity was primarily influenced by the loading of iron, reaching its highest value of 705.7 μmol CO2 g−1 in the 2Fe-5Co/Al2O3. The correlation between catalytic activity and the physicochemical properties of the material was established. The 0.8Fe-5Co/Al2O3 sample exhibited excellent performance due to the favorable dispersibility of cobalt, its reducibility, and its affordable basicity

    New Terbium Complex as a Luminescent Sensor for the Highly Selective Detection of Malathion in Water Samples

    No full text
    A novel ligand, namely, (N’,N’’’-((1E,2E)-1,2-diphenylethane-1,2-diylidene)bis(3-allyl-2-hydroxybenzohydrazide) (H2DBAZ), was designed and synthesized. This ligand demonstrated the ability to successfully interact with Tb(III) ions, resulting in the formation of a chemosensor that exhibited luminescent properties. The novel ligand was produced and subsequently subjected to characterization with several analytical techniques, including mass spectroscopy, elemental analysis, Fourier-transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H NMR). The postulated chemical structure of the Tb(III)–(DBAZ) complex was assessed utilizing a molar ratio approach. The chemosensor exhibited both selectivity and sensitivity towards malathion when compared to other nine organophosphorus pesticides that were investigated in methanol. The method was based on the phenomenon of luminescence static quenching shown by the complex subsequent to its interaction with the malathion pesticide. A linear Stern–Volmer plot was seen and, subsequently, utilized to generate the calibration curve. The observed linear range spanned from 0.39 to 60 µM, with a strong correlation coefficient of 0.999. Additionally, the limit of detection (LOD) was determined to be 0.118 µM. This methodology was successfully employed to measure the presence of malathion in various water samples. This particular complex exhibited promising potential for application in the development of a chemosensor utilizing the molecularly imprinted polymer approach
    corecore