45 research outputs found
Towards the use of distance sampling to monitorize mountain ungulates numbers.
Many management actions involving mountain ungulates require unbiased and precise
estimations of their numbers. Topography, among other factors, makes difficult the use of
direct methods and to assess the effective area sampled. On the other hand, social behaviour
of animals increases the risk to violate the assumption that observations must be independent
events. This could be avoided using the group or cluster size as a covariate and estimating
density of animals through the density of clusters. In this paper we revise the increasing
potential of Distance Sampling methodology to estimate mountain ungulate populations. We
address different problems which compromise some of the assumptions and discuss several
topics concerning the importance of assessing effective area sampled, estimation of g(0), and
model selection when attempting to adapt the use of Distance Sampling to a three-dimensional
scenarios, like mountainous habitats and ungulate populations
A continuous time version and a generalization of a Markovrecapture model for trapping experiments
Wileyto et al. [E.P. Wileyto, W.J. Ewens, M.A. Mullen, Markov-recapture population estimates: a
tool for improving interpretation of trapping experiments, Ecology 75 (1994) 1109] propose a
four-state discrete time Markov process, which describes the structure of a marking-capture
experiment as a method of population estimation. They propose this method primarily for
estimation of closed insect populations. Their method provides a mark-recapture estimate from a
single trap observation by allowing subjects to mark themselves. The estimate of the unknown
population size is based on the assumption of a closed population and a simple Markov model in
which the rates of marking, capture, and recapture are assumed to be equal. Using the one step
transition probability matrix of their model, we illustrate how to go from an embedded discrete
time Markov process to a continuous time Markov process assuming exponentially distributed
holding times. We also compute the transition probabilities after time t for the continuous time
case and compare the limiting behavior of the continuous and discrete time processes. Finally, we
generalize their model by relaxing the assumption of equal per capita rates for marking, capture,
and recapture. Other questions about how their results change when using a continuous time
Markov process are examined. © 2008 Elsevier Inc. All rights reserved
Sessão Temática: Modelação Estatística com Aplicações às Ciências da Vida
O principal objectivo desta sessão é dar a conhecer à Comunidade Estatística
Portuguesa uma pequeníssima parte das potenciais aplicações da Estatística nas
Ciências da Vida. Apresentam-se três artigos de carácter expositor e informativo com
várias aplicações realizadas no âmbito das dissertações do Mestrado em Matemática
Aplicada às Ciências Biológicas do Instituto Superior de Agronomia da Universidade
Técnica de Lisboa (ISA-UTL); aplicações na área das Pescas realizadas no Instituto
Nacional de Investigação das Pescas e do Mar (IPIMAR); e nalmente, algumas aplica
ções da Estatística na Genética com a intervenção de colegas da Faculdade de Ciências
da Universidade de Lisboa (FCUL)
On the distribution of proportions and ratios as indicators of ungulate body condition
In the wildlife literature various studies have shown that the amount of fat around the kidneys is
often a good indicator of body condition and health of ungulate species ([1],[2]). Wildlife biologies often
measure the weights of fat around the kidneys and the kidneys themselves (without fat), comparing
these two quantities and transforming them into a ratio or a proportion as surrogates of body condition
of dead animals. Later, they use these indices as response variables to model the e®ect of covariates
or treatments, such as age group and season of the year, on body condition. The more commonly
used models are ANOVA-type. Most debate has been concentrated on whether or not to use a simple
ANOVA model of ratios or proportions with ¯xed e®ects, or an ANCOVA model using fat weight as
response variable, and the kidneys weight as a covariate ([3]). Results have taken by surprise some
biologists because using one or another model with both response variables could lead to very di®erent
results for what it considered the most important e®ects. In this manuscript we attempt to highlight
the main di®erences and the distributional properties of these response variables, ratio and proportion
Taking individual heterogeneity in mortality risks into account in demographic studies of wild animal populations: development and use of statistical models.
The Cormarck-Jolly-Seber model incorporating frailty implemented in WinBUGS, using the 9000 kittiwake’s dataset monitorized during 22 years, showed that the convergence is very low over computational view. We developed different kind of multistate model, considering independence/dependence between random effect of breeding and survival probability. The last part of the work was dedicated to model selection with Bayesian framework
Mark-recapture estimators for dual frame population size of prominent nesting structures: the effect of uncertain detection probability
The combined mark-recapture and line transect sampling methodology proposed by Alpizar-
Jara and Pollock [Journal of Environmental and Ecological Statistics, 3(4), 311–327, 1996; In
Marine Mammal Survey and Assessment Methods Symposium. G.W. Garner, S.C. Amstrup,
J.L. Laake, B.F.J. Manly, L.L. McDonald, and D.C. Robertson (Eds.), A.A. Balkema,
Rotterdam, Netherlands, pp. 99–114, 1999] is used to illustrate the estimation of population size
for populations with prominent nesting structures (i.e., bald eagle nests). In the context of a bald
eagle population, the number of nests in a list frame corresponds to a ‘‘pre-marked’’ sample of
nests, and an area frame corresponds to a set of transect strips that could be regularly monitored.
Unlike previous methods based on dual frame methodology using the screening estimator
[Haines and Pollock (Journal of Environmental and Ecological Statistics, 5, 245–256, 1998a;
Survey Methodology, 24(1), 79–88, 1998b)], we no longer need to assume that the area frame is
complete (i.e., all the nests in the sampled sites do not need to be seen). One may use line transect
sampling to estimate the probability of detection in a sampled area. Combining information
from list and area frames provides more efficient estimators than those obtained by using data
from only one frame. We derive an estimator for detection probability and generalize the
screening estimator. A simulation study is carried out to compare the performance of the
Chapman modification of the Lincoln–Petersen estimator to the screening estimator. Simulation
results show that although the Chapman estimator is generally less precise than the screening
estimator, the latter can be severely biased in presence of uncertain detection. The screening
estimator outperforms the Chapman estimator in terms of mean squared error when detection
probability is near 1 wheareas the Chapman estimator outperforms the screening estimator when
detection probability is lower than a certain threshold value depending on particular scenarios
O modelo logspline aplicado aos transectos lineares.
A teoria denominada logspline density estimation, permite estimar o logaritmo
de uma função densidade de probabilidade utilizando-se splines cúbicos, estima
ção por máxima verosimilhança, e adição e remoção de nós seleccionados pelas
estatísticas de Rao e Wald, respectivamente. Faz-se uma adaptação desta teoria para
estimar a probabilidade de detecção sobre a linha central de um transecto percorrido,
e consequentemente, a densidade populacional de animais no contexto da amostragem
por distâncias. Avalia-se a metodologia das logsplines aplicadas aos transectos lineares
através de um conjunto alargado de simulações, e comparam-se os resultados com
a metodologia mais utilizada actualmente, implementada no programa DISTANCE
(http://www.ruwpa.st-and.ac.uk/distance). Os nossos resultados mostram que a estima
ção por logsplines é uma alternativa competitiva com os métodos actualmente mais
utilizados. Em particular, a técnica revelou ser superior quando se tem funções de
detecção do tipo exponencial negativa. Analisa-se um exemplo prático com população
conhecida para exempli car a aplicabilidade destas técnicas
Captura-recaptura: um estudo de simulação para avaliar a performance de estimadores do tipo Lincoln-Petersen
Os modelos de captura-recaptura têm sido amplamente utilizados para estimar
a dimensão de populações naturais. A forma mais simples de um estudo de
captura-recaptura consiste em tirar, primeiro, uma amostra de indivíduos de dimens
ão n1. Estes indivíduos são marcados e identi cados de forma única e devolvidos à
área de estudo para que se integrem novamente à população de interesse. Posteriormente,
uma amostra aleatória de dimensão n2 é também tirada da população. Na
segunda amostra encontramos que n11 dos n2 animais capturados foram previamente
marcados. Uma simples relação entre as proporções dos indivíduos marcados na popula
ção e os indivíduos marcados na segunda amostra gera um estimador do tamanho
da população de interesse. O estimador resultante é conhecido como o estimador de
Lincoln-Petersen. Vários modelos probabilísticos associados a este estimador formam
as bases para a teoria de amostragem em populações animais conhecida como capturarecaptura.
Neste trabalho, apresentam-se e comparam-se as performances de quatro
estimadores do tipo de Lincoln-Petersen propostos na literatura
Estimação bayesiana de g0 em amostragem por distâncias
Neste trabalho apresenta-se uma abordagem bayesiana para estimar o
tamanho de populações animais utilizando o modelo combinado de captura-recaptura
e transectos lineares (Alpizar-Jara e Pollock, 1999. Combining line transect capturerecapture
for mark-resighting studies. Em Marine Mammal Survey and Assessment
Methods. Garner et al. eds. Balkema. p. 99-114). A probabilidade de detectar
um indivíduo em cima da linha do transecto percorrido é estimada admitindo que g0 é
menor ou igual do que 1. As distribuições a posteriori dos parâmetros que determinam
a função de detecção são obtidas através do método de amostragem Gibbs implementado
no WinBUGS. Compara-se e avalia-se a performance dos estimadores bayesianos
com os estimadores de máxima verosimilhança do modelo combinado. O trabalho é
ilustrado com um exemplo prático
Modelando heterogeneidade n˜ao observ´avel em probabilidades de captura-recaptura
Os modelos de captura-recaptura tˆem sido largamente utilizados para
estimar o tamanho de popula¸c˜oes animais. O presente trabalho incidir´a sobre o caso
dos modelos em popula¸c˜oes fechadas, que pressup˜oe que o n´umero de indiv´ıduos na
popula¸c˜ao permanece constante durante o per´ıodo de estudo. Um estimador para o
tamanho da popula¸c˜ao pode ser enviesado se n˜ao for considerada heterogeneidade
nas probabilidades de captura, relativa `as caracter´ısticas inerentes dos indiv´ıduos,
que s˜ao dif´ıceis de medir ou n˜ao observ´aveis. Este tipo de problema tem sido
tradicionalmente abordado mediante os modelos de captura-recaptura para popula
¸c˜oes fechadas, designados por Mh e Mth. Neste trabalho ser´a utilizado regress˜ao
log´ıstica para modelar a heterogeneidade observ´avel nas probabilidades de captura
dos indiv´ıduos na popula¸c˜ao utilizando covari´aveis e a heterogeneidade n˜ao observ´avel
ser´a modelada atrav´es do efeito aleat´orio, utilizando a inferˆencia bayesiana. As
estimativas das probabilidades de captura s˜ao utilizadas para estimar o tamanho da
popula¸c˜ao. Comparam-se os estimadores dos modelos Mth, quando se modela apenas
heterogeneidade observ´avel e quando ´e modelada a heterogeneidade observ´avel e n˜ao
observ´avel. Este trabalho ´e ilustrado com um exemplo pr´atico