4,821 research outputs found
Bounds for graph regularity and removal lemmas
We show, for any positive integer k, that there exists a graph in which any
equitable partition of its vertices into k parts has at least ck^2/\log^* k
pairs of parts which are not \epsilon-regular, where c,\epsilon>0 are absolute
constants. This bound is tight up to the constant c and addresses a question of
Gowers on the number of irregular pairs in Szemer\'edi's regularity lemma.
In order to gain some control over irregular pairs, another regularity lemma,
known as the strong regularity lemma, was developed by Alon, Fischer,
Krivelevich, and Szegedy. For this lemma, we prove a lower bound of
wowzer-type, which is one level higher in the Ackermann hierarchy than the
tower function, on the number of parts in the strong regularity lemma,
essentially matching the upper bound. On the other hand, for the induced graph
removal lemma, the standard application of the strong regularity lemma, we find
a different proof which yields a tower-type bound.
We also discuss bounds on several related regularity lemmas, including the
weak regularity lemma of Frieze and Kannan and the recently established regular
approximation theorem. In particular, we show that a weak partition with
approximation parameter \epsilon may require as many as
2^{\Omega(\epsilon^{-2})} parts. This is tight up to the implied constant and
solves a problem studied by Lov\'asz and Szegedy.Comment: 62 page
Balanced Allocation on Graphs: A Random Walk Approach
In this paper we propose algorithms for allocating sequential balls into
bins that are interconnected as a -regular -vertex graph , where
can be any integer.Let be a given positive integer. In each round
, , ball picks a node of uniformly at random and
performs a non-backtracking random walk of length from the chosen node.Then
it allocates itself on one of the visited nodes with minimum load (ties are
broken uniformly at random). Suppose that has a sufficiently large girth
and . Then we establish an upper bound for the maximum number
of balls at any bin after allocating balls by the algorithm, called {\it
maximum load}, in terms of with high probability. We also show that the
upper bound is at most an factor above the lower bound that is
proved for the algorithm. In particular, we show that if we set , for every constant , and
has girth at least , then the maximum load attained by the
algorithm is bounded by with high probability.Finally, we
slightly modify the algorithm to have similar results for balanced allocation
on -regular graph with and sufficiently large girth
Span programs and quantum algorithms for st-connectivity and claw detection
We introduce a span program that decides st-connectivity, and generalize the
span program to develop quantum algorithms for several graph problems. First,
we give an algorithm for st-connectivity that uses O(n d^{1/2}) quantum queries
to the n x n adjacency matrix to decide if vertices s and t are connected,
under the promise that they either are connected by a path of length at most d,
or are disconnected. We also show that if T is a path, a star with two
subdivided legs, or a subdivision of a claw, its presence as a subgraph in the
input graph G can be detected with O(n) quantum queries to the adjacency
matrix. Under the promise that G either contains T as a subgraph or does not
contain T as a minor, we give O(n)-query quantum algorithms for detecting T
either a triangle or a subdivision of a star. All these algorithms can be
implemented time efficiently and, except for the triangle-detection algorithm,
in logarithmic space. One of the main techniques is to modify the
st-connectivity span program to drop along the way "breadcrumbs," which must be
retrieved before the path from s is allowed to enter t.Comment: 18 pages, 4 figure
Clustering, Hamming Embedding, Generalized LSH and the Max Norm
We study the convex relaxation of clustering and hamming embedding, focusing
on the asymmetric case (co-clustering and asymmetric hamming embedding),
understanding their relationship to LSH as studied by (Charikar 2002) and to
the max-norm ball, and the differences between their symmetric and asymmetric
versions.Comment: 17 page
Heavy Hitters and the Structure of Local Privacy
We present a new locally differentially private algorithm for the heavy
hitters problem which achieves optimal worst-case error as a function of all
standardly considered parameters. Prior work obtained error rates which depend
optimally on the number of users, the size of the domain, and the privacy
parameter, but depend sub-optimally on the failure probability.
We strengthen existing lower bounds on the error to incorporate the failure
probability, and show that our new upper bound is tight with respect to this
parameter as well. Our lower bound is based on a new understanding of the
structure of locally private protocols. We further develop these ideas to
obtain the following general results beyond heavy hitters.
Advanced Grouposition: In the local model, group privacy for
users degrades proportionally to , instead of linearly in
as in the central model. Stronger group privacy yields improved max-information
guarantees, as well as stronger lower bounds (via "packing arguments"), over
the central model.
Building on a transformation of Bassily and Smith (STOC 2015), we
give a generic transformation from any non-interactive approximate-private
local protocol into a pure-private local protocol. Again in contrast with the
central model, this shows that we cannot obtain more accurate algorithms by
moving from pure to approximate local privacy
Derandomized Construction of Combinatorial Batch Codes
Combinatorial Batch Codes (CBCs), replication-based variant of Batch Codes
introduced by Ishai et al. in STOC 2004, abstracts the following data
distribution problem: data items are to be replicated among servers in
such a way that any of the data items can be retrieved by reading at
most one item from each server with the total amount of storage over
servers restricted to . Given parameters and , where and
are constants, one of the challenging problems is to construct -uniform CBCs
(CBCs where each data item is replicated among exactly servers) which
maximizes the value of . In this work, we present explicit construction of
-uniform CBCs with data items. The
construction has the property that the servers are almost regular, i.e., number
of data items stored in each server is in the range . The
construction is obtained through better analysis and derandomization of the
randomized construction presented by Ishai et al. Analysis reveals almost
regularity of the servers, an aspect that so far has not been addressed in the
literature. The derandomization leads to explicit construction for a wide range
of values of (for given and ) where no other explicit construction
with similar parameters, i.e., with , is
known. Finally, we discuss possibility of parallel derandomization of the
construction
- …