2 research outputs found

    Characterizing the Quantum Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology

    No full text
    We optimized the performance of quantum confined Stark effect QCSE based voltage nanosensors. A high throughput approach for single particle QCSE characterization was developed and utilized to screen a library of such nanosensors. Type II ZnSe CdS seeded nanorods were found to have the best performance among the different nanosensors evaluated in this work. The degree of correlation between intensity changes and spectral changes of the excitons emission under applied field was characterized. An upper limit for the temporal response of individual ZnSe CdS nanorods to voltage modulation was characterized by high throughput, high temporal resolution intensity measurements using a novel photon counting camera. The measured 3.5 us response time is limited by the voltage modulation electronics and represents about 30 times higher bandwidth than needed for recording an action potential in a neuron

    Axial Colocalization of Single Molecules with Nanometer Accuracy Using Metal-Induced Energy Transfer

    No full text
    Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups
    corecore