26 research outputs found

    A unitarized model of inclusive and diffractive DIS with Q2-evolution

    Full text link
    We discuss the interplay of low-x physics and QCD scaling violations by extending the unified approach describing inclusive structure functions and diffractive production in γp\gamma* p interactions proposed in previous papers, to large values of Q2. We describe the procedure of extracting, from the non-perturbative model, initial conditions for the QCD evolution that respect unitarity. Assuming Regge factorization of the diffractive structure function, a similar procedure is proposed for the calculation of hard diffraction. The results are in good agreement with experimental data on the proton structure function F2F_2 and the most recent data on the reduced diffractive cross section, x_P \sigma_r^{\D(3)}. Predictions for both F2F_2 and FLF_L are presented in a wide kinematical range and compared to calculations within high-energy QCD.Comment: 22 pages, 12 figure

    Nuclear shadowing in Glauber-Gribov theory with Q2-evolution

    Full text link
    We consider deep inelastic scattering off nuclei in the Regge limit within the Glauber-Gribov model. Using unitarized parton distribution functions for the proton, we find sizeable shadowing effects on the nuclear total and longitudinal structure functions, F2AF_2^A and FLAF_L^A, in the low-x limit. Extending a fan-diagram analysis for the large-mass region of coherent diffraction off nuclei to high Q2, we also find significant shadowing effects in this kinematical regime. Finally, we discuss shortcomings of our approach and possible extensions of the model to other kinematical regimes.Comment: 16 pages, 9 figure

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Multi-strange baryon production in pp collisions at root s=7 TeV with ALICE

    Get PDF
    A measurement of the multi-strange Xi(-) and Omega(-) baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton-proton collisions at a centre-of-mass energy of 7 TeV. The transverse momentum (p(T)) distributions were studied at mid-rapidity (vertical bar y vertical bar LT 0.5) in the range of 0.6 LT p(T) LT 8.5 GeV/c Xi(-) for and Xi(+) baryons, and in the range of 0.8 LT P-T LT 5 GeV/c for Omega(-) and LT (Omega)over bar GT (+). Baryons and antibaryons were measured as separate particles and we find that the baryon to antibaryon ratio of both particle species is consistent with unity over the entire range of the measurement. The statistical precision of the current data has allowed us to measure a difference between the mean p(T) of Xi(-) ((Xi) over bar)(+) and Omega(-) ((Omega) over bar (+)). Particle yields, mean pi, and the spectra in the intermediate pi range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for Omega(-)((Omega) over bar (+)). This PYTHIA tune approaches the pi spectra of Xi(-) and Xi(+) baryons below p(T) LT 0.85 GeV/c and describes the Xi(-) and Xi(+) spectra above p(T) GT 6.0 GeV/c. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of (Omega(-) +(Omega) over bar (+))/(Xi(-) + Xi(+)) as a function of transverse mass. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Comment on the heavy→light form factors

    Full text link
    corecore